Metamath Proof Explorer


Theorem ltrncoidN

Description: Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analogue of vector subtraction. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ltrn1o.b B=BaseK
ltrn1o.h H=LHypK
ltrn1o.t T=LTrnKW
Assertion ltrncoidN KHLWHFTGTFG-1=IBF=G

Proof

Step Hyp Ref Expression
1 ltrn1o.b B=BaseK
2 ltrn1o.h H=LHypK
3 ltrn1o.t T=LTrnKW
4 simpl1 KHLWHFTGTFG-1=IBKHLWH
5 simpl3 KHLWHFTGTFG-1=IBGT
6 1 2 3 ltrn1o KHLWHGTG:B1-1 ontoB
7 4 5 6 syl2anc KHLWHFTGTFG-1=IBG:B1-1 ontoB
8 f1ococnv1 G:B1-1 ontoBG-1G=IB
9 7 8 syl KHLWHFTGTFG-1=IBG-1G=IB
10 9 coeq2d KHLWHFTGTFG-1=IBFG-1G=FIB
11 simpl2 KHLWHFTGTFG-1=IBFT
12 1 2 3 ltrn1o KHLWHFTF:B1-1 ontoB
13 4 11 12 syl2anc KHLWHFTGTFG-1=IBF:B1-1 ontoB
14 f1of F:B1-1 ontoBF:BB
15 fcoi1 F:BBFIB=F
16 13 14 15 3syl KHLWHFTGTFG-1=IBFIB=F
17 10 16 eqtr2d KHLWHFTGTFG-1=IBF=FG-1G
18 coass FG-1G=FG-1G
19 17 18 eqtr4di KHLWHFTGTFG-1=IBF=FG-1G
20 simpr KHLWHFTGTFG-1=IBFG-1=IB
21 20 coeq1d KHLWHFTGTFG-1=IBFG-1G=IBG
22 f1of G:B1-1 ontoBG:BB
23 fcoi2 G:BBIBG=G
24 7 22 23 3syl KHLWHFTGTFG-1=IBIBG=G
25 21 24 eqtrd KHLWHFTGTFG-1=IBFG-1G=G
26 19 25 eqtrd KHLWHFTGTFG-1=IBF=G
27 simpr KHLWHFTGTF=GF=G
28 27 coeq1d KHLWHFTGTF=GFG-1=GG-1
29 simpl1 KHLWHFTGTF=GKHLWH
30 simpl3 KHLWHFTGTF=GGT
31 29 30 6 syl2anc KHLWHFTGTF=GG:B1-1 ontoB
32 f1ococnv2 G:B1-1 ontoBGG-1=IB
33 31 32 syl KHLWHFTGTF=GGG-1=IB
34 28 33 eqtrd KHLWHFTGTF=GFG-1=IB
35 26 34 impbida KHLWHFTGTFG-1=IBF=G