Description: Two translations are equal if the composition of one with the converse of the other is the zero translation. This is an analogue of vector subtraction. (Contributed by NM, 7-Apr-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ltrn1o.b | |
|
ltrn1o.h | |
||
ltrn1o.t | |
||
Assertion | ltrncoidN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrn1o.b | |
|
2 | ltrn1o.h | |
|
3 | ltrn1o.t | |
|
4 | simpl1 | |
|
5 | simpl3 | |
|
6 | 1 2 3 | ltrn1o | |
7 | 4 5 6 | syl2anc | |
8 | f1ococnv1 | |
|
9 | 7 8 | syl | |
10 | 9 | coeq2d | |
11 | simpl2 | |
|
12 | 1 2 3 | ltrn1o | |
13 | 4 11 12 | syl2anc | |
14 | f1of | |
|
15 | fcoi1 | |
|
16 | 13 14 15 | 3syl | |
17 | 10 16 | eqtr2d | |
18 | coass | |
|
19 | 17 18 | eqtr4di | |
20 | simpr | |
|
21 | 20 | coeq1d | |
22 | f1of | |
|
23 | fcoi2 | |
|
24 | 7 22 23 | 3syl | |
25 | 21 24 | eqtrd | |
26 | 19 25 | eqtrd | |
27 | simpr | |
|
28 | 27 | coeq1d | |
29 | simpl1 | |
|
30 | simpl3 | |
|
31 | 29 30 6 | syl2anc | |
32 | f1ococnv2 | |
|
33 | 31 32 | syl | |
34 | 28 33 | eqtrd | |
35 | 26 34 | impbida | |