| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltrn1o.b |  | 
						
							| 2 |  | ltrn1o.h |  | 
						
							| 3 |  | ltrn1o.t |  | 
						
							| 4 |  | simpl1 |  | 
						
							| 5 |  | simpl3 |  | 
						
							| 6 | 1 2 3 | ltrn1o |  | 
						
							| 7 | 4 5 6 | syl2anc |  | 
						
							| 8 |  | f1ococnv1 |  | 
						
							| 9 | 7 8 | syl |  | 
						
							| 10 | 9 | coeq2d |  | 
						
							| 11 |  | simpl2 |  | 
						
							| 12 | 1 2 3 | ltrn1o |  | 
						
							| 13 | 4 11 12 | syl2anc |  | 
						
							| 14 |  | f1of |  | 
						
							| 15 |  | fcoi1 |  | 
						
							| 16 | 13 14 15 | 3syl |  | 
						
							| 17 | 10 16 | eqtr2d |  | 
						
							| 18 |  | coass |  | 
						
							| 19 | 17 18 | eqtr4di |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 20 | coeq1d |  | 
						
							| 22 |  | f1of |  | 
						
							| 23 |  | fcoi2 |  | 
						
							| 24 | 7 22 23 | 3syl |  | 
						
							| 25 | 21 24 | eqtrd |  | 
						
							| 26 | 19 25 | eqtrd |  | 
						
							| 27 |  | simpr |  | 
						
							| 28 | 27 | coeq1d |  | 
						
							| 29 |  | simpl1 |  | 
						
							| 30 |  | simpl3 |  | 
						
							| 31 | 29 30 6 | syl2anc |  | 
						
							| 32 |  | f1ococnv2 |  | 
						
							| 33 | 31 32 | syl |  | 
						
							| 34 | 28 33 | eqtrd |  | 
						
							| 35 | 26 34 | impbida |  |