Metamath Proof Explorer


Theorem ltxr

Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of Gleason p. 173. (Contributed by NM, 14-Oct-2005)

Ref Expression
Assertion ltxr A*B*A<BABA<BA=−∞B=+∞AB=+∞A=−∞B

Proof

Step Hyp Ref Expression
1 breq12 x=Ay=Bx<yA<B
2 df-3an xyx<yxyx<y
3 2 opabbii xy|xyx<y=xy|xyx<y
4 1 3 brab2a Axy|xyx<yBABA<B
5 4 a1i A*B*Axy|xyx<yBABA<B
6 brun A−∞×+∞−∞×BA−∞×+∞BA−∞×B
7 brxp A−∞×+∞BA−∞B+∞
8 elun A−∞AA−∞
9 orcom AA−∞A−∞A
10 8 9 bitri A−∞A−∞A
11 elsng A*A−∞A=−∞
12 11 orbi1d A*A−∞AA=−∞A
13 10 12 bitrid A*A−∞A=−∞A
14 elsng B*B+∞B=+∞
15 13 14 bi2anan9 A*B*A−∞B+∞A=−∞AB=+∞
16 andir A=−∞AB=+∞A=−∞B=+∞AB=+∞
17 15 16 bitrdi A*B*A−∞B+∞A=−∞B=+∞AB=+∞
18 7 17 bitrid A*B*A−∞×+∞BA=−∞B=+∞AB=+∞
19 brxp A−∞×BA−∞B
20 11 anbi1d A*A−∞BA=−∞B
21 20 adantr A*B*A−∞BA=−∞B
22 19 21 bitrid A*B*A−∞×BA=−∞B
23 18 22 orbi12d A*B*A−∞×+∞BA−∞×BA=−∞B=+∞AB=+∞A=−∞B
24 orass A=−∞B=+∞AB=+∞A=−∞BA=−∞B=+∞AB=+∞A=−∞B
25 23 24 bitrdi A*B*A−∞×+∞BA−∞×BA=−∞B=+∞AB=+∞A=−∞B
26 6 25 bitrid A*B*A−∞×+∞−∞×BA=−∞B=+∞AB=+∞A=−∞B
27 5 26 orbi12d A*B*Axy|xyx<yBA−∞×+∞−∞×BABA<BA=−∞B=+∞AB=+∞A=−∞B
28 df-ltxr <=xy|xyx<y−∞×+∞−∞×
29 28 breqi A<BAxy|xyx<y−∞×+∞−∞×B
30 brun Axy|xyx<y−∞×+∞−∞×BAxy|xyx<yBA−∞×+∞−∞×B
31 29 30 bitri A<BAxy|xyx<yBA−∞×+∞−∞×B
32 orass ABA<BA=−∞B=+∞AB=+∞A=−∞BABA<BA=−∞B=+∞AB=+∞A=−∞B
33 27 31 32 3bitr4g A*B*A<BABA<BA=−∞B=+∞AB=+∞A=−∞B