Metamath Proof Explorer


Theorem lvecindp2

Description: Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses lvecindp2.v V=BaseW
lvecindp2.p +˙=+W
lvecindp2.f F=ScalarW
lvecindp2.k K=BaseF
lvecindp2.t ·˙=W
lvecindp2.o 0˙=0W
lvecindp2.n N=LSpanW
lvecindp2.w φWLVec
lvecindp2.x φXV0˙
lvecindp2.y φYV0˙
lvecindp2.a φAK
lvecindp2.b φBK
lvecindp2.c φCK
lvecindp2.d φDK
lvecindp2.q φNXNY
lvecindp2.e φA·˙X+˙B·˙Y=C·˙X+˙D·˙Y
Assertion lvecindp2 φA=CB=D

Proof

Step Hyp Ref Expression
1 lvecindp2.v V=BaseW
2 lvecindp2.p +˙=+W
3 lvecindp2.f F=ScalarW
4 lvecindp2.k K=BaseF
5 lvecindp2.t ·˙=W
6 lvecindp2.o 0˙=0W
7 lvecindp2.n N=LSpanW
8 lvecindp2.w φWLVec
9 lvecindp2.x φXV0˙
10 lvecindp2.y φYV0˙
11 lvecindp2.a φAK
12 lvecindp2.b φBK
13 lvecindp2.c φCK
14 lvecindp2.d φDK
15 lvecindp2.q φNXNY
16 lvecindp2.e φA·˙X+˙B·˙Y=C·˙X+˙D·˙Y
17 eqid CntzW=CntzW
18 lveclmod WLVecWLMod
19 8 18 syl φWLMod
20 9 eldifad φXV
21 1 7 lspsnsubg WLModXVNXSubGrpW
22 19 20 21 syl2anc φNXSubGrpW
23 10 eldifad φYV
24 1 7 lspsnsubg WLModYVNYSubGrpW
25 19 23 24 syl2anc φNYSubGrpW
26 1 6 7 8 20 23 15 lspdisj2 φNXNY=0˙
27 lmodabl WLModWAbel
28 19 27 syl φWAbel
29 17 28 22 25 ablcntzd φNXCntzWNY
30 1 5 3 4 7 19 11 20 lspsneli φA·˙XNX
31 1 5 3 4 7 19 13 20 lspsneli φC·˙XNX
32 1 5 3 4 7 19 12 23 lspsneli φB·˙YNY
33 1 5 3 4 7 19 14 23 lspsneli φD·˙YNY
34 2 6 17 22 25 26 29 30 31 32 33 subgdisjb φA·˙X+˙B·˙Y=C·˙X+˙D·˙YA·˙X=C·˙XB·˙Y=D·˙Y
35 16 34 mpbid φA·˙X=C·˙XB·˙Y=D·˙Y
36 eldifsni XV0˙X0˙
37 9 36 syl φX0˙
38 1 5 3 4 6 8 11 13 20 37 lvecvscan2 φA·˙X=C·˙XA=C
39 eldifsni YV0˙Y0˙
40 10 39 syl φY0˙
41 1 5 3 4 6 8 12 14 23 40 lvecvscan2 φB·˙Y=D·˙YB=D
42 38 41 anbi12d φA·˙X=C·˙XB·˙Y=D·˙YA=CB=D
43 35 42 mpbid φA=CB=D