Metamath Proof Explorer


Theorem lvolcmp

Description: If two lattice planes are comparable, they are equal. (Contributed by NM, 12-Jul-2012)

Ref Expression
Hypotheses lvolcmp.l ˙=K
lvolcmp.v V=LVolsK
Assertion lvolcmp KHLXVYVX˙YX=Y

Proof

Step Hyp Ref Expression
1 lvolcmp.l ˙=K
2 lvolcmp.v V=LVolsK
3 simp2 KHLXVYVXV
4 simp1 KHLXVYVKHL
5 eqid BaseK=BaseK
6 5 2 lvolbase XVXBaseK
7 6 3ad2ant2 KHLXVYVXBaseK
8 eqid K=K
9 eqid LPlanesK=LPlanesK
10 5 8 9 2 islvol4 KHLXBaseKXVzLPlanesKzKX
11 4 7 10 syl2anc KHLXVYVXVzLPlanesKzKX
12 3 11 mpbid KHLXVYVzLPlanesKzKX
13 simpr3 KHLXVYVzLPlanesKzKXX˙YX˙Y
14 hlpos KHLKPoset
15 14 3ad2ant1 KHLXVYVKPoset
16 15 adantr KHLXVYVzLPlanesKzKXX˙YKPoset
17 7 adantr KHLXVYVzLPlanesKzKXX˙YXBaseK
18 simpl3 KHLXVYVzLPlanesKzKXX˙YYV
19 5 2 lvolbase YVYBaseK
20 18 19 syl KHLXVYVzLPlanesKzKXX˙YYBaseK
21 simpr1 KHLXVYVzLPlanesKzKXX˙YzLPlanesK
22 5 9 lplnbase zLPlanesKzBaseK
23 21 22 syl KHLXVYVzLPlanesKzKXX˙YzBaseK
24 simpr2 KHLXVYVzLPlanesKzKXX˙YzKX
25 simpl1 KHLXVYVzLPlanesKzKXX˙YKHL
26 5 1 8 cvrle KHLzBaseKXBaseKzKXz˙X
27 25 23 17 24 26 syl31anc KHLXVYVzLPlanesKzKXX˙Yz˙X
28 5 1 postr KPosetzBaseKXBaseKYBaseKz˙XX˙Yz˙Y
29 16 23 17 20 28 syl13anc KHLXVYVzLPlanesKzKXX˙Yz˙XX˙Yz˙Y
30 27 13 29 mp2and KHLXVYVzLPlanesKzKXX˙Yz˙Y
31 1 8 9 2 lplncvrlvol2 KHLzLPlanesKYVz˙YzKY
32 25 21 18 30 31 syl31anc KHLXVYVzLPlanesKzKXX˙YzKY
33 5 1 8 cvrcmp KPosetXBaseKYBaseKzBaseKzKXzKYX˙YX=Y
34 16 17 20 23 24 32 33 syl132anc KHLXVYVzLPlanesKzKXX˙YX˙YX=Y
35 13 34 mpbid KHLXVYVzLPlanesKzKXX˙YX=Y
36 35 3exp2 KHLXVYVzLPlanesKzKXX˙YX=Y
37 36 rexlimdv KHLXVYVzLPlanesKzKXX˙YX=Y
38 12 37 mpd KHLXVYVX˙YX=Y
39 5 1 posref KPosetXBaseKX˙X
40 15 7 39 syl2anc KHLXVYVX˙X
41 breq2 X=YX˙XX˙Y
42 40 41 syl5ibcom KHLXVYVX=YX˙Y
43 38 42 impbid KHLXVYVX˙YX=Y