Metamath Proof Explorer


Theorem lvoli3

Description: Condition implying a 3-dim lattice volume. (Contributed by NM, 2-Aug-2012)

Ref Expression
Hypotheses lvoli3.l ˙=K
lvoli3.j ˙=joinK
lvoli3.a A=AtomsK
lvoli3.p P=LPlanesK
lvoli3.v V=LVolsK
Assertion lvoli3 KHLXPQA¬Q˙XX˙QV

Proof

Step Hyp Ref Expression
1 lvoli3.l ˙=K
2 lvoli3.j ˙=joinK
3 lvoli3.a A=AtomsK
4 lvoli3.p P=LPlanesK
5 lvoli3.v V=LVolsK
6 simpl2 KHLXPQA¬Q˙XXP
7 simpl3 KHLXPQA¬Q˙XQA
8 simpr KHLXPQA¬Q˙X¬Q˙X
9 eqidd KHLXPQA¬Q˙XX˙Q=X˙Q
10 breq2 y=Xr˙yr˙X
11 10 notbid y=X¬r˙y¬r˙X
12 oveq1 y=Xy˙r=X˙r
13 12 eqeq2d y=XX˙Q=y˙rX˙Q=X˙r
14 11 13 anbi12d y=X¬r˙yX˙Q=y˙r¬r˙XX˙Q=X˙r
15 breq1 r=Qr˙XQ˙X
16 15 notbid r=Q¬r˙X¬Q˙X
17 oveq2 r=QX˙r=X˙Q
18 17 eqeq2d r=QX˙Q=X˙rX˙Q=X˙Q
19 16 18 anbi12d r=Q¬r˙XX˙Q=X˙r¬Q˙XX˙Q=X˙Q
20 14 19 rspc2ev XPQA¬Q˙XX˙Q=X˙QyPrA¬r˙yX˙Q=y˙r
21 6 7 8 9 20 syl112anc KHLXPQA¬Q˙XyPrA¬r˙yX˙Q=y˙r
22 simpl1 KHLXPQA¬Q˙XKHL
23 22 hllatd KHLXPQA¬Q˙XKLat
24 eqid BaseK=BaseK
25 24 4 lplnbase XPXBaseK
26 6 25 syl KHLXPQA¬Q˙XXBaseK
27 24 3 atbase QAQBaseK
28 7 27 syl KHLXPQA¬Q˙XQBaseK
29 24 2 latjcl KLatXBaseKQBaseKX˙QBaseK
30 23 26 28 29 syl3anc KHLXPQA¬Q˙XX˙QBaseK
31 24 1 2 3 4 5 islvol3 KHLX˙QBaseKX˙QVyPrA¬r˙yX˙Q=y˙r
32 22 30 31 syl2anc KHLXPQA¬Q˙XX˙QVyPrA¬r˙yX˙Q=y˙r
33 21 32 mpbird KHLXPQA¬Q˙XX˙QV