Metamath Proof Explorer


Theorem ma1repveval

Description: An entry of an identity matrix with a replaced column. (Contributed by AV, 16-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A=NMatR
marepvcl.b B=BaseA
marepvcl.v V=BaseRN
ma1repvcl.1 1˙=1A
mulmarep1el.0 0˙=0R
mulmarep1el.e E=1˙NmatRepVRCK
Assertion ma1repveval RRingMBCVKNINJNIEJ=ifJ=KCIifJ=I1R0˙

Proof

Step Hyp Ref Expression
1 marepvcl.a A=NMatR
2 marepvcl.b B=BaseA
3 marepvcl.v V=BaseRN
4 ma1repvcl.1 1˙=1A
5 mulmarep1el.0 0˙=0R
6 mulmarep1el.e E=1˙NmatRepVRCK
7 1 2 matrcl MBNFinRV
8 7 simpld MBNFin
9 1 fveq2i 1A=1NMatR
10 4 9 eqtri 1˙=1NMatR
11 1 2 10 mat1bas RRingNFin1˙B
12 11 expcom NFinRRing1˙B
13 8 12 syl MBRRing1˙B
14 13 3ad2ant1 MBCVKNRRing1˙B
15 14 impcom RRingMBCVKN1˙B
16 simpr2 RRingMBCVKNCV
17 simpr3 RRingMBCVKNKN
18 15 16 17 3jca RRingMBCVKN1˙BCVKN
19 6 a1i 1˙BCVKNINJNE=1˙NmatRepVRCK
20 19 oveqd 1˙BCVKNINJNIEJ=I1˙NmatRepVRCKJ
21 eqid NmatRepVR=NmatRepVR
22 1 2 21 3 marepveval 1˙BCVKNINJNI1˙NmatRepVRCKJ=ifJ=KCII1˙J
23 20 22 eqtrd 1˙BCVKNINJNIEJ=ifJ=KCII1˙J
24 18 23 stoic3 RRingMBCVKNINJNIEJ=ifJ=KCII1˙J
25 eqid 1R=1R
26 8 3ad2ant1 MBCVKNNFin
27 26 3ad2ant2 RRingMBCVKNINJNNFin
28 simp1 RRingMBCVKNINJNRRing
29 simp3l RRingMBCVKNINJNIN
30 simp3r RRingMBCVKNINJNJN
31 1 25 5 27 28 29 30 4 mat1ov RRingMBCVKNINJNI1˙J=ifI=J1R0˙
32 eqcom I=JJ=I
33 32 a1i RRingMBCVKNINJNI=JJ=I
34 33 ifbid RRingMBCVKNINJNifI=J1R0˙=ifJ=I1R0˙
35 31 34 eqtrd RRingMBCVKNINJNI1˙J=ifJ=I1R0˙
36 35 ifeq2d RRingMBCVKNINJNifJ=KCII1˙J=ifJ=KCIifJ=I1R0˙
37 24 36 eqtrd RRingMBCVKNINJNIEJ=ifJ=KCIifJ=I1R0˙