Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
mapdcl2
Metamath Proof Explorer
Description: The mapping of a subspace of vector space H is a subspace in the dual
space of functionals with closed kernels. (Contributed by NM , 31-Jan-2015)
Ref
Expression
Hypotheses
mapdlss.h
mapdlss.m
mapdlss.u
mapdlss.s
mapdlss.c
mapdlss.t
mapdlss.k
mapdlss.r
Assertion
mapdcl2
Proof
Step
Hyp
Ref
Expression
1
mapdlss.h
2
mapdlss.m
3
mapdlss.u
4
mapdlss.s
5
mapdlss.c
6
mapdlss.t
7
mapdlss.k
8
mapdlss.r
9
1 2 3 4 7 8
mapdcl
10
1 2 5 6 7
mapdrn2
11
9 10
eleqtrd