Metamath Proof Explorer


Theorem mapdcl2

Description: The mapping of a subspace of vector space H is a subspace in the dual space of functionals with closed kernels. (Contributed by NM, 31-Jan-2015)

Ref Expression
Hypotheses mapdlss.h H=LHypK
mapdlss.m M=mapdKW
mapdlss.u U=DVecHKW
mapdlss.s S=LSubSpU
mapdlss.c C=LCDualKW
mapdlss.t T=LSubSpC
mapdlss.k φKHLWH
mapdlss.r φRS
Assertion mapdcl2 φMRT

Proof

Step Hyp Ref Expression
1 mapdlss.h H=LHypK
2 mapdlss.m M=mapdKW
3 mapdlss.u U=DVecHKW
4 mapdlss.s S=LSubSpU
5 mapdlss.c C=LCDualKW
6 mapdlss.t T=LSubSpC
7 mapdlss.k φKHLWH
8 mapdlss.r φRS
9 1 2 3 4 7 8 mapdcl φMRranM
10 1 2 5 6 7 mapdrn2 φranM=T
11 9 10 eleqtrd φMRT