Metamath Proof Explorer


Theorem mapdh6b0N

Description: Lemmma for mapdh6N . (Contributed by NM, 23-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdh.p +˙=+U
mapdh.a ˙=+C
mapdh6b0.y φYV
mapdh6b0.z φZV
mapdh6b0.ne φNXNYZ=0˙
Assertion mapdh6b0N φ¬XNYZ

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdh.p +˙=+U
19 mapdh.a ˙=+C
20 mapdh6b0.y φYV
21 mapdh6b0.z φZV
22 mapdh6b0.ne φNXNYZ=0˙
23 eqid LSubSpU=LSubSpU
24 3 5 14 dvhlvec φULVec
25 3 5 14 dvhlmod φULMod
26 6 23 9 25 20 21 lspprcl φNYZLSubSpU
27 6 8 9 23 24 26 17 lspdisjb φ¬XNYZNXNYZ=0˙
28 22 27 mpbird φ¬XNYZ