Metamath Proof Explorer


Theorem mapdhval

Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.x φ X A
mapdh.f φ F B
mapdh.y φ Y E
Assertion mapdhval φ I X F Y = if Y = 0 ˙ Q ι h D | M N Y = J h M N X - ˙ Y = J F R h

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.x φ X A
4 mapdh.f φ F B
5 mapdh.y φ Y E
6 otex X F Y V
7 fveq2 x = X F Y 2 nd x = 2 nd X F Y
8 7 eqeq1d x = X F Y 2 nd x = 0 ˙ 2 nd X F Y = 0 ˙
9 7 sneqd x = X F Y 2 nd x = 2 nd X F Y
10 9 fveq2d x = X F Y N 2 nd x = N 2 nd X F Y
11 10 fveqeq2d x = X F Y M N 2 nd x = J h M N 2 nd X F Y = J h
12 fveq2 x = X F Y 1 st x = 1 st X F Y
13 12 fveq2d x = X F Y 1 st 1 st x = 1 st 1 st X F Y
14 13 7 oveq12d x = X F Y 1 st 1 st x - ˙ 2 nd x = 1 st 1 st X F Y - ˙ 2 nd X F Y
15 14 sneqd x = X F Y 1 st 1 st x - ˙ 2 nd x = 1 st 1 st X F Y - ˙ 2 nd X F Y
16 15 fveq2d x = X F Y N 1 st 1 st x - ˙ 2 nd x = N 1 st 1 st X F Y - ˙ 2 nd X F Y
17 16 fveq2d x = X F Y M N 1 st 1 st x - ˙ 2 nd x = M N 1 st 1 st X F Y - ˙ 2 nd X F Y
18 12 fveq2d x = X F Y 2 nd 1 st x = 2 nd 1 st X F Y
19 18 oveq1d x = X F Y 2 nd 1 st x R h = 2 nd 1 st X F Y R h
20 19 sneqd x = X F Y 2 nd 1 st x R h = 2 nd 1 st X F Y R h
21 20 fveq2d x = X F Y J 2 nd 1 st x R h = J 2 nd 1 st X F Y R h
22 17 21 eqeq12d x = X F Y M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h
23 11 22 anbi12d x = X F Y M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h
24 23 riotabidv x = X F Y ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h = ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h
25 8 24 ifbieq2d x = X F Y if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h = if 2 nd X F Y = 0 ˙ Q ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h
26 1 fvexi Q V
27 riotaex ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h V
28 26 27 ifex if 2 nd X F Y = 0 ˙ Q ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h V
29 25 2 28 fvmpt X F Y V I X F Y = if 2 nd X F Y = 0 ˙ Q ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h
30 6 29 mp1i φ I X F Y = if 2 nd X F Y = 0 ˙ Q ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h
31 ot3rdg Y E 2 nd X F Y = Y
32 5 31 syl φ 2 nd X F Y = Y
33 32 eqeq1d φ 2 nd X F Y = 0 ˙ Y = 0 ˙
34 32 sneqd φ 2 nd X F Y = Y
35 34 fveq2d φ N 2 nd X F Y = N Y
36 35 fveqeq2d φ M N 2 nd X F Y = J h M N Y = J h
37 ot1stg X A F B Y E 1 st 1 st X F Y = X
38 3 4 5 37 syl3anc φ 1 st 1 st X F Y = X
39 38 32 oveq12d φ 1 st 1 st X F Y - ˙ 2 nd X F Y = X - ˙ Y
40 39 sneqd φ 1 st 1 st X F Y - ˙ 2 nd X F Y = X - ˙ Y
41 40 fveq2d φ N 1 st 1 st X F Y - ˙ 2 nd X F Y = N X - ˙ Y
42 41 fveq2d φ M N 1 st 1 st X F Y - ˙ 2 nd X F Y = M N X - ˙ Y
43 ot2ndg X A F B Y E 2 nd 1 st X F Y = F
44 3 4 5 43 syl3anc φ 2 nd 1 st X F Y = F
45 44 oveq1d φ 2 nd 1 st X F Y R h = F R h
46 45 sneqd φ 2 nd 1 st X F Y R h = F R h
47 46 fveq2d φ J 2 nd 1 st X F Y R h = J F R h
48 42 47 eqeq12d φ M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h M N X - ˙ Y = J F R h
49 36 48 anbi12d φ M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h M N Y = J h M N X - ˙ Y = J F R h
50 49 riotabidv φ ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h = ι h D | M N Y = J h M N X - ˙ Y = J F R h
51 33 50 ifbieq2d φ if 2 nd X F Y = 0 ˙ Q ι h D | M N 2 nd X F Y = J h M N 1 st 1 st X F Y - ˙ 2 nd X F Y = J 2 nd 1 st X F Y R h = if Y = 0 ˙ Q ι h D | M N Y = J h M N X - ˙ Y = J F R h
52 30 51 eqtrd φ I X F Y = if Y = 0 ˙ Q ι h D | M N Y = J h M N X - ˙ Y = J F R h