Metamath Proof Explorer


Theorem mapdhval

Description: Lemmma for ~? mapdh . (Contributed by NM, 3-Apr-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.x φXA
mapdh.f φFB
mapdh.y φYE
Assertion mapdhval φIXFY=ifY=0˙QιhD|MNY=JhMNX-˙Y=JFRh

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.x φXA
4 mapdh.f φFB
5 mapdh.y φYE
6 otex XFYV
7 fveq2 x=XFY2ndx=2ndXFY
8 7 eqeq1d x=XFY2ndx=0˙2ndXFY=0˙
9 7 sneqd x=XFY2ndx=2ndXFY
10 9 fveq2d x=XFYN2ndx=N2ndXFY
11 10 fveqeq2d x=XFYMN2ndx=JhMN2ndXFY=Jh
12 fveq2 x=XFY1stx=1stXFY
13 12 fveq2d x=XFY1st1stx=1st1stXFY
14 13 7 oveq12d x=XFY1st1stx-˙2ndx=1st1stXFY-˙2ndXFY
15 14 sneqd x=XFY1st1stx-˙2ndx=1st1stXFY-˙2ndXFY
16 15 fveq2d x=XFYN1st1stx-˙2ndx=N1st1stXFY-˙2ndXFY
17 16 fveq2d x=XFYMN1st1stx-˙2ndx=MN1st1stXFY-˙2ndXFY
18 12 fveq2d x=XFY2nd1stx=2nd1stXFY
19 18 oveq1d x=XFY2nd1stxRh=2nd1stXFYRh
20 19 sneqd x=XFY2nd1stxRh=2nd1stXFYRh
21 20 fveq2d x=XFYJ2nd1stxRh=J2nd1stXFYRh
22 17 21 eqeq12d x=XFYMN1st1stx-˙2ndx=J2nd1stxRhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh
23 11 22 anbi12d x=XFYMN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRhMN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh
24 23 riotabidv x=XFYιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh=ιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh
25 8 24 ifbieq2d x=XFYif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh=if2ndXFY=0˙QιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh
26 1 fvexi QV
27 riotaex ιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRhV
28 26 27 ifex if2ndXFY=0˙QιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRhV
29 25 2 28 fvmpt XFYVIXFY=if2ndXFY=0˙QιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh
30 6 29 mp1i φIXFY=if2ndXFY=0˙QιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh
31 ot3rdg YE2ndXFY=Y
32 5 31 syl φ2ndXFY=Y
33 32 eqeq1d φ2ndXFY=0˙Y=0˙
34 32 sneqd φ2ndXFY=Y
35 34 fveq2d φN2ndXFY=NY
36 35 fveqeq2d φMN2ndXFY=JhMNY=Jh
37 ot1stg XAFBYE1st1stXFY=X
38 3 4 5 37 syl3anc φ1st1stXFY=X
39 38 32 oveq12d φ1st1stXFY-˙2ndXFY=X-˙Y
40 39 sneqd φ1st1stXFY-˙2ndXFY=X-˙Y
41 40 fveq2d φN1st1stXFY-˙2ndXFY=NX-˙Y
42 41 fveq2d φMN1st1stXFY-˙2ndXFY=MNX-˙Y
43 ot2ndg XAFBYE2nd1stXFY=F
44 3 4 5 43 syl3anc φ2nd1stXFY=F
45 44 oveq1d φ2nd1stXFYRh=FRh
46 45 sneqd φ2nd1stXFYRh=FRh
47 46 fveq2d φJ2nd1stXFYRh=JFRh
48 42 47 eqeq12d φMN1st1stXFY-˙2ndXFY=J2nd1stXFYRhMNX-˙Y=JFRh
49 36 48 anbi12d φMN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRhMNY=JhMNX-˙Y=JFRh
50 49 riotabidv φιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh=ιhD|MNY=JhMNX-˙Y=JFRh
51 33 50 ifbieq2d φif2ndXFY=0˙QιhD|MN2ndXFY=JhMN1st1stXFY-˙2ndXFY=J2nd1stXFYRh=ifY=0˙QιhD|MNY=JhMNX-˙Y=JFRh
52 30 51 eqtrd φIXFY=ifY=0˙QιhD|MNY=JhMNX-˙Y=JFRh