Metamath Proof Explorer


Theorem mapdpglem24

Description: Lemma for mapdpg . Existence part - consolidate hypotheses in mapdpglem23 . (Contributed by NM, 21-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
Assertion mapdpglem24 φhFMNY=JhMNX-˙Y=JGRh

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 13 eldifad φXV
19 14 eldifad φYV
20 eqid LSSumC=LSSumC
21 1 2 3 4 5 7 8 12 18 19 20 11 mapdpglem2 φtMNXLSSumCMNYMNX-˙Y=Jt
22 12 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtKHLWH
23 18 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtXV
24 19 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtYV
25 simp2 φtMNXLSSumCMNYMNX-˙Y=JttMNXLSSumCMNY
26 eqid ScalarU=ScalarU
27 eqid BaseScalarU=BaseScalarU
28 eqid C=C
29 15 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtGF
30 17 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtMNX=JG
31 1 2 3 4 5 7 8 22 23 24 20 11 9 25 26 27 28 10 29 30 mapdpglem3 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRz
32 22 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzKHLWH
33 23 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzXV
34 24 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzYV
35 simp12 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRztMNXLSSumCMNY
36 29 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzGF
37 30 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzMNX=JG
38 16 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtNXNY
39 38 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzNXNY
40 simp13 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzMNX-˙Y=Jt
41 eqid 0ScalarU=0ScalarU
42 simp2l φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzgBaseScalarU
43 simp2r φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzzMNY
44 simp3 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzt=gCGRz
45 eldifsni XV0˙X0˙
46 13 45 syl φX0˙
47 46 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtX0˙
48 47 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzX0˙
49 eldifsni YV0˙Y0˙
50 14 49 syl φY0˙
51 50 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtY0˙
52 51 3ad2ant1 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzY0˙
53 eqid invrScalarUgCz=invrScalarUgCz
54 1 2 3 4 5 7 8 32 33 34 20 11 9 35 26 27 28 10 36 37 6 39 40 41 42 43 44 48 52 53 mapdpglem23 φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzhFMNY=JhMNX-˙Y=JGRh
55 54 3exp φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzhFMNY=JhMNX-˙Y=JGRh
56 55 rexlimdvv φtMNXLSSumCMNYMNX-˙Y=JtgBaseScalarUzMNYt=gCGRzhFMNY=JhMNX-˙Y=JGRh
57 31 56 mpd φtMNXLSSumCMNYMNX-˙Y=JthFMNY=JhMNX-˙Y=JGRh
58 57 rexlimdv3a φtMNXLSSumCMNYMNX-˙Y=JthFMNY=JhMNX-˙Y=JGRh
59 21 58 mpd φhFMNY=JhMNX-˙Y=JGRh