Description: Lemma for mapdpg . Existence part - consolidate hypotheses in mapdpglem23 . (Contributed by NM, 21-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapdpg.h | |
|
mapdpg.m | |
||
mapdpg.u | |
||
mapdpg.v | |
||
mapdpg.s | |
||
mapdpg.z | |
||
mapdpg.n | |
||
mapdpg.c | |
||
mapdpg.f | |
||
mapdpg.r | |
||
mapdpg.j | |
||
mapdpg.k | |
||
mapdpg.x | |
||
mapdpg.y | |
||
mapdpg.g | |
||
mapdpg.ne | |
||
mapdpg.e | |
||
Assertion | mapdpglem24 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpg.h | |
|
2 | mapdpg.m | |
|
3 | mapdpg.u | |
|
4 | mapdpg.v | |
|
5 | mapdpg.s | |
|
6 | mapdpg.z | |
|
7 | mapdpg.n | |
|
8 | mapdpg.c | |
|
9 | mapdpg.f | |
|
10 | mapdpg.r | |
|
11 | mapdpg.j | |
|
12 | mapdpg.k | |
|
13 | mapdpg.x | |
|
14 | mapdpg.y | |
|
15 | mapdpg.g | |
|
16 | mapdpg.ne | |
|
17 | mapdpg.e | |
|
18 | 13 | eldifad | |
19 | 14 | eldifad | |
20 | eqid | |
|
21 | 1 2 3 4 5 7 8 12 18 19 20 11 | mapdpglem2 | |
22 | 12 | 3ad2ant1 | |
23 | 18 | 3ad2ant1 | |
24 | 19 | 3ad2ant1 | |
25 | simp2 | |
|
26 | eqid | |
|
27 | eqid | |
|
28 | eqid | |
|
29 | 15 | 3ad2ant1 | |
30 | 17 | 3ad2ant1 | |
31 | 1 2 3 4 5 7 8 22 23 24 20 11 9 25 26 27 28 10 29 30 | mapdpglem3 | |
32 | 22 | 3ad2ant1 | |
33 | 23 | 3ad2ant1 | |
34 | 24 | 3ad2ant1 | |
35 | simp12 | |
|
36 | 29 | 3ad2ant1 | |
37 | 30 | 3ad2ant1 | |
38 | 16 | 3ad2ant1 | |
39 | 38 | 3ad2ant1 | |
40 | simp13 | |
|
41 | eqid | |
|
42 | simp2l | |
|
43 | simp2r | |
|
44 | simp3 | |
|
45 | eldifsni | |
|
46 | 13 45 | syl | |
47 | 46 | 3ad2ant1 | |
48 | 47 | 3ad2ant1 | |
49 | eldifsni | |
|
50 | 14 49 | syl | |
51 | 50 | 3ad2ant1 | |
52 | 51 | 3ad2ant1 | |
53 | eqid | |
|
54 | 1 2 3 4 5 7 8 32 33 34 20 11 9 35 26 27 28 10 36 37 6 39 40 41 42 43 44 48 52 53 | mapdpglem23 | |
55 | 54 | 3exp | |
56 | 55 | rexlimdvv | |
57 | 31 56 | mpd | |
58 | 57 | rexlimdv3a | |
59 | 21 58 | mpd | |