Metamath Proof Explorer


Theorem mapdpglem30a

Description: Lemma for mapdpg . (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
Assertion mapdpglem30a φG0C

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 eqid LSAtomsU=LSAtomsU
19 eqid LSAtomsC=LSAtomsC
20 1 3 12 dvhlmod φULMod
21 4 7 6 18 20 13 lsatlspsn φNXLSAtomsU
22 1 2 3 18 8 19 12 21 mapdat φMNXLSAtomsC
23 17 22 eqeltrrd φJGLSAtomsC
24 eqid 0C=0C
25 1 8 12 lcdlmod φCLMod
26 9 11 24 19 25 15 lsatspn0 φJGLSAtomsCG0C
27 23 26 mpbid φG0C