Metamath Proof Explorer


Theorem mapdpglem30b

Description: Lemma for mapdpg . (Contributed by NM, 22-Mar-2015)

Ref Expression
Hypotheses mapdpg.h H=LHypK
mapdpg.m M=mapdKW
mapdpg.u U=DVecHKW
mapdpg.v V=BaseU
mapdpg.s -˙=-U
mapdpg.z 0˙=0U
mapdpg.n N=LSpanU
mapdpg.c C=LCDualKW
mapdpg.f F=BaseC
mapdpg.r R=-C
mapdpg.j J=LSpanC
mapdpg.k φKHLWH
mapdpg.x φXV0˙
mapdpg.y φYV0˙
mapdpg.g φGF
mapdpg.ne φNXNY
mapdpg.e φMNX=JG
mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
Assertion mapdpglem30b φi0C

Proof

Step Hyp Ref Expression
1 mapdpg.h H=LHypK
2 mapdpg.m M=mapdKW
3 mapdpg.u U=DVecHKW
4 mapdpg.v V=BaseU
5 mapdpg.s -˙=-U
6 mapdpg.z 0˙=0U
7 mapdpg.n N=LSpanU
8 mapdpg.c C=LCDualKW
9 mapdpg.f F=BaseC
10 mapdpg.r R=-C
11 mapdpg.j J=LSpanC
12 mapdpg.k φKHLWH
13 mapdpg.x φXV0˙
14 mapdpg.y φYV0˙
15 mapdpg.g φGF
16 mapdpg.ne φNXNY
17 mapdpg.e φMNX=JG
18 mapdpgem25.h1 φhFMNY=JhMNX-˙Y=JGRh
19 mapdpgem25.i1 φiFMNY=JiMNX-˙Y=JGRi
20 19 simprd φMNY=JiMNX-˙Y=JGRi
21 20 simpld φMNY=Ji
22 eqid LSAtomsU=LSAtomsU
23 eqid LSAtomsC=LSAtomsC
24 1 3 12 dvhlmod φULMod
25 4 7 6 22 24 14 lsatlspsn φNYLSAtomsU
26 1 2 3 22 8 23 12 25 mapdat φMNYLSAtomsC
27 21 26 eqeltrrd φJiLSAtomsC
28 eqid 0C=0C
29 1 8 12 lcdlmod φCLMod
30 19 simpld φiF
31 9 11 28 23 29 30 lsatspn0 φJiLSAtomsCi0C
32 27 31 mpbid φi0C