Metamath Proof Explorer


Theorem mapdrn2

Description: Range of the map defined by df-mapd . TODO: this seems to be needed a lot in hdmaprnlem3eN etc. Would it be better to change df-mapd theorems to use LSubSpC instead of ran M ? (Contributed by NM, 13-Mar-2015)

Ref Expression
Hypotheses mapdrn2.h H = LHyp K
mapdrn2.m M = mapd K W
mapdrn2.c C = LCDual K W
mapdrn2.t T = LSubSp C
mapdrn2.k φ K HL W H
Assertion mapdrn2 φ ran M = T

Proof

Step Hyp Ref Expression
1 mapdrn2.h H = LHyp K
2 mapdrn2.m M = mapd K W
3 mapdrn2.c C = LCDual K W
4 mapdrn2.t T = LSubSp C
5 mapdrn2.k φ K HL W H
6 eqid ocH K W = ocH K W
7 eqid DVecH K W = DVecH K W
8 eqid LFnl DVecH K W = LFnl DVecH K W
9 eqid LKer DVecH K W = LKer DVecH K W
10 eqid LDual DVecH K W = LDual DVecH K W
11 eqid LSubSp LDual DVecH K W = LSubSp LDual DVecH K W
12 eqid f LFnl DVecH K W | ocH K W ocH K W LKer DVecH K W f = LKer DVecH K W f = f LFnl DVecH K W | ocH K W ocH K W LKer DVecH K W f = LKer DVecH K W f
13 1 6 2 7 8 9 10 11 12 5 mapdrn φ ran M = LSubSp LDual DVecH K W 𝒫 f LFnl DVecH K W | ocH K W ocH K W LKer DVecH K W f = LKer DVecH K W f
14 1 6 3 4 7 8 9 10 11 12 5 lcdlss φ T = LSubSp LDual DVecH K W 𝒫 f LFnl DVecH K W | ocH K W ocH K W LKer DVecH K W f = LKer DVecH K W f
15 13 14 eqtr4d φ ran M = T