Metamath Proof Explorer


Theorem mapdval

Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015)

Ref Expression
Hypotheses mapdval.h H=LHypK
mapdval.u U=DVecHKW
mapdval.s S=LSubSpU
mapdval.f F=LFnlU
mapdval.l L=LKerU
mapdval.o O=ocHKW
mapdval.m M=mapdKW
mapdval.k φKXWH
mapdval.t φTS
Assertion mapdval φMT=fF|OOLf=LfOLfT

Proof

Step Hyp Ref Expression
1 mapdval.h H=LHypK
2 mapdval.u U=DVecHKW
3 mapdval.s S=LSubSpU
4 mapdval.f F=LFnlU
5 mapdval.l L=LKerU
6 mapdval.o O=ocHKW
7 mapdval.m M=mapdKW
8 mapdval.k φKXWH
9 mapdval.t φTS
10 1 2 3 4 5 6 7 mapdfval KXWHM=sSfF|OOLf=LfOLfs
11 8 10 syl φM=sSfF|OOLf=LfOLfs
12 11 fveq1d φMT=sSfF|OOLf=LfOLfsT
13 4 fvexi FV
14 13 rabex fF|OOLf=LfOLfTV
15 sseq2 s=TOLfsOLfT
16 15 anbi2d s=TOOLf=LfOLfsOOLf=LfOLfT
17 16 rabbidv s=TfF|OOLf=LfOLfs=fF|OOLf=LfOLfT
18 eqid sSfF|OOLf=LfOLfs=sSfF|OOLf=LfOLfs
19 17 18 fvmptg TSfF|OOLf=LfOLfTVsSfF|OOLf=LfOLfsT=fF|OOLf=LfOLfT
20 9 14 19 sylancl φsSfF|OOLf=LfOLfsT=fF|OOLf=LfOLfT
21 12 20 eqtrd φMT=fF|OOLf=LfOLfT