Description: Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015) (Revised by AV, 7-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapfien2.s | |
|
mapfien2.t | |
||
mapfien2.ac | |
||
mapfien2.bd | |
||
mapfien2.z | |
||
mapfien2.w | |
||
Assertion | mapfien2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfien2.s | |
|
2 | mapfien2.t | |
|
3 | mapfien2.ac | |
|
4 | mapfien2.bd | |
|
5 | mapfien2.z | |
|
6 | mapfien2.w | |
|
7 | enfixsn | |
|
8 | 5 6 4 7 | syl3anc | |
9 | bren | |
|
10 | 3 9 | sylib | |
11 | eqid | |
|
12 | eqid | |
|
13 | f1ocnv | |
|
14 | 13 | 3ad2ant2 | |
15 | simp3 | |
|
16 | 3 | 3ad2ant1 | |
17 | relen | |
|
18 | 17 | brrelex1i | |
19 | 16 18 | syl | |
20 | 4 | 3ad2ant1 | |
21 | 17 | brrelex1i | |
22 | 20 21 | syl | |
23 | 17 | brrelex2i | |
24 | 16 23 | syl | |
25 | 17 | brrelex2i | |
26 | 20 25 | syl | |
27 | 5 | 3ad2ant1 | |
28 | 1 11 12 14 15 19 22 24 26 27 | mapfien | |
29 | ovex | |
|
30 | 1 29 | rabex2 | |
31 | 30 | f1oen | |
32 | 28 31 | syl | |
33 | 32 | 3adant3r | |
34 | breq2 | |
|
35 | 34 | rabbidv | |
36 | 35 2 | eqtr4di | |
37 | 36 | adantl | |
38 | 37 | 3ad2ant3 | |
39 | 33 38 | breqtrd | |
40 | 39 | 3exp | |
41 | 40 | exlimdv | |
42 | 10 41 | mpd | |
43 | 42 | exlimdv | |
44 | 8 43 | mpd | |