Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mapss2.a | |
|
mapss2.b | |
||
mapss2.c | |
||
mapss2.n | |
||
Assertion | mapss2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapss2.a | |
|
2 | mapss2.b | |
|
3 | mapss2.c | |
|
4 | mapss2.n | |
|
5 | 2 | adantr | |
6 | simpr | |
|
7 | mapss | |
|
8 | 5 6 7 | syl2anc | |
9 | 8 | ex | |
10 | n0 | |
|
11 | 4 10 | sylib | |
12 | 11 | adantr | |
13 | eqidd | |
|
14 | eqidd | |
|
15 | simpr | |
|
16 | vex | |
|
17 | 16 | a1i | |
18 | 13 14 15 17 | fvmptd | |
19 | 18 | eqcomd | |
20 | 19 | ad4ant13 | |
21 | simplr | |
|
22 | simplr | |
|
23 | 22 | fmpttd | |
24 | 1 | adantr | |
25 | 3 | adantr | |
26 | 24 25 | elmapd | |
27 | 23 26 | mpbird | |
28 | 27 | adantlr | |
29 | 21 28 | sseldd | |
30 | elmapi | |
|
31 | 29 30 | syl | |
32 | 31 | adantlr | |
33 | simplr | |
|
34 | 32 33 | ffvelcdmd | |
35 | 20 34 | eqeltrd | |
36 | 35 | ralrimiva | |
37 | dfss3 | |
|
38 | 36 37 | sylibr | |
39 | 38 | ex | |
40 | 39 | exlimdv | |
41 | 12 40 | mpd | |
42 | 41 | ex | |
43 | 9 42 | impbid | |