Metamath Proof Explorer


Theorem mapss2

Description: Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses mapss2.a φAV
mapss2.b φBW
mapss2.c φCZ
mapss2.n φC
Assertion mapss2 φABACBC

Proof

Step Hyp Ref Expression
1 mapss2.a φAV
2 mapss2.b φBW
3 mapss2.c φCZ
4 mapss2.n φC
5 2 adantr φABBW
6 simpr φABAB
7 mapss BWABACBC
8 5 6 7 syl2anc φABACBC
9 8 ex φABACBC
10 n0 CxxC
11 4 10 sylib φxxC
12 11 adantr φACBCxxC
13 eqidd φxCwCy=wCy
14 eqidd φxCw=xy=y
15 simpr φxCxC
16 vex yV
17 16 a1i φxCyV
18 13 14 15 17 fvmptd φxCwCyx=y
19 18 eqcomd φxCy=wCyx
20 19 ad4ant13 φACBCxCyAy=wCyx
21 simplr φACBCyAACBC
22 simplr φyAwCyA
23 22 fmpttd φyAwCy:CA
24 1 adantr φyAAV
25 3 adantr φyACZ
26 24 25 elmapd φyAwCyACwCy:CA
27 23 26 mpbird φyAwCyAC
28 27 adantlr φACBCyAwCyAC
29 21 28 sseldd φACBCyAwCyBC
30 elmapi wCyBCwCy:CB
31 29 30 syl φACBCyAwCy:CB
32 31 adantlr φACBCxCyAwCy:CB
33 simplr φACBCxCyAxC
34 32 33 ffvelcdmd φACBCxCyAwCyxB
35 20 34 eqeltrd φACBCxCyAyB
36 35 ralrimiva φACBCxCyAyB
37 dfss3 AByAyB
38 36 37 sylibr φACBCxCAB
39 38 ex φACBCxCAB
40 39 exlimdv φACBCxxCAB
41 12 40 mpd φACBCAB
42 41 ex φACBCAB
43 9 42 impbid φABACBC