Metamath Proof Explorer


Theorem mapval2

Description: Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007)

Ref Expression
Hypotheses elmap.1 AV
elmap.2 BV
Assertion mapval2 AB=𝒫B×Af|fFnB

Proof

Step Hyp Ref Expression
1 elmap.1 AV
2 elmap.2 BV
3 dff2 g:BAgFnBgB×A
4 3 biancomi g:BAgB×AgFnB
5 1 2 elmap gABg:BA
6 elin g𝒫B×Af|fFnBg𝒫B×Agf|fFnB
7 velpw g𝒫B×AgB×A
8 vex gV
9 fneq1 f=gfFnBgFnB
10 8 9 elab gf|fFnBgFnB
11 7 10 anbi12i g𝒫B×Agf|fFnBgB×AgFnB
12 6 11 bitri g𝒫B×Af|fFnBgB×AgFnB
13 4 5 12 3bitr4i gABg𝒫B×Af|fFnB
14 13 eqriv AB=𝒫B×Af|fFnB