Metamath Proof Explorer


Theorem marrepval

Description: Third substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019)

Ref Expression
Hypotheses marrepfval.a A=NMatR
marrepfval.b B=BaseA
marrepfval.q Q=NmatRRepR
marrepfval.z 0˙=0R
Assertion marrepval MBSBaseRKNLNKMQSL=iN,jNifi=Kifj=LS0˙iMj

Proof

Step Hyp Ref Expression
1 marrepfval.a A=NMatR
2 marrepfval.b B=BaseA
3 marrepfval.q Q=NmatRRepR
4 marrepfval.z 0˙=0R
5 1 2 3 4 marrepval0 MBSBaseRMQS=kN,lNiN,jNifi=kifj=lS0˙iMj
6 5 adantr MBSBaseRKNLNMQS=kN,lNiN,jNifi=kifj=lS0˙iMj
7 simprl MBSBaseRKNLNKN
8 simplrr MBSBaseRKNLNk=KLN
9 1 2 matrcl MBNFinRV
10 9 simpld MBNFin
11 10 10 jca MBNFinNFin
12 11 ad3antrrr MBSBaseRKNLNk=Kl=LNFinNFin
13 mpoexga NFinNFiniN,jNifi=kifj=lS0˙iMjV
14 12 13 syl MBSBaseRKNLNk=Kl=LiN,jNifi=kifj=lS0˙iMjV
15 eqeq2 k=Ki=ki=K
16 15 adantr k=Kl=Li=ki=K
17 eqeq2 l=Lj=lj=L
18 17 ifbid l=Lifj=lS0˙=ifj=LS0˙
19 18 adantl k=Kl=Lifj=lS0˙=ifj=LS0˙
20 16 19 ifbieq1d k=Kl=Lifi=kifj=lS0˙iMj=ifi=Kifj=LS0˙iMj
21 20 mpoeq3dv k=Kl=LiN,jNifi=kifj=lS0˙iMj=iN,jNifi=Kifj=LS0˙iMj
22 21 adantl MBSBaseRKNLNk=Kl=LiN,jNifi=kifj=lS0˙iMj=iN,jNifi=Kifj=LS0˙iMj
23 7 8 14 22 ovmpodv2 MBSBaseRKNLNMQS=kN,lNiN,jNifi=kifj=lS0˙iMjKMQSL=iN,jNifi=Kifj=LS0˙iMj
24 6 23 mpd MBSBaseRKNLNKMQSL=iN,jNifi=Kifj=LS0˙iMj