Metamath Proof Explorer


Theorem marypha2

Description: Version of marypha1 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypotheses marypha2.a φ A Fin
marypha2.b φ F : A Fin
marypha2.c φ d A d F d
Assertion marypha2 φ g g : A 1-1 V x A g x F x

Proof

Step Hyp Ref Expression
1 marypha2.a φ A Fin
2 marypha2.b φ F : A Fin
3 marypha2.c φ d A d F d
4 2 1 unirnffid φ ran F Fin
5 eqid x A x × F x = x A x × F x
6 5 marypha2lem1 x A x × F x A × ran F
7 6 a1i φ x A x × F x A × ran F
8 2 ffnd φ F Fn A
9 5 marypha2lem4 F Fn A d A x A x × F x d = F d
10 8 9 sylan φ d A x A x × F x d = F d
11 3 10 breqtrrd φ d A d x A x × F x d
12 1 4 7 11 marypha1 φ g 𝒫 x A x × F x g : A 1-1 ran F
13 df-rex g 𝒫 x A x × F x g : A 1-1 ran F g g 𝒫 x A x × F x g : A 1-1 ran F
14 ssv ran F V
15 f1ss g : A 1-1 ran F ran F V g : A 1-1 V
16 14 15 mpan2 g : A 1-1 ran F g : A 1-1 V
17 16 ad2antll φ g 𝒫 x A x × F x g : A 1-1 ran F g : A 1-1 V
18 elpwi g 𝒫 x A x × F x g x A x × F x
19 18 ad2antrl φ g 𝒫 x A x × F x g : A 1-1 ran F g x A x × F x
20 f1fn g : A 1-1 ran F g Fn A
21 20 ad2antll φ g 𝒫 x A x × F x g : A 1-1 ran F g Fn A
22 5 marypha2lem3 F Fn A g Fn A g x A x × F x x A g x F x
23 8 21 22 syl2an2r φ g 𝒫 x A x × F x g : A 1-1 ran F g x A x × F x x A g x F x
24 19 23 mpbid φ g 𝒫 x A x × F x g : A 1-1 ran F x A g x F x
25 17 24 jca φ g 𝒫 x A x × F x g : A 1-1 ran F g : A 1-1 V x A g x F x
26 25 ex φ g 𝒫 x A x × F x g : A 1-1 ran F g : A 1-1 V x A g x F x
27 26 eximdv φ g g 𝒫 x A x × F x g : A 1-1 ran F g g : A 1-1 V x A g x F x
28 13 27 syl5bi φ g 𝒫 x A x × F x g : A 1-1 ran F g g : A 1-1 V x A g x F x
29 12 28 mpd φ g g : A 1-1 V x A g x F x