Metamath Proof Explorer


Theorem mat0scmat

Description: The empty matrix over a ring is a scalar matrix (and therefore, by scmatdmat , also a diagonal matrix). (Contributed by AV, 21-Dec-2019)

Ref Expression
Assertion mat0scmat RRingScMatR

Proof

Step Hyp Ref Expression
1 0ex V
2 1 snid
3 mat0dimbas0 RRingBaseMatR=
4 2 3 eleqtrrid RRingBaseMatR
5 eqid BaseR=BaseR
6 eqid 1R=1R
7 5 6 ringidcl RRing1RBaseR
8 oveq1 c=1RcMatR=1RMatR
9 8 eqeq2d c=1R=cMatR=1RMatR
10 9 adantl RRingc=1R=cMatR=1RMatR
11 eqid MatR=MatR
12 11 mat0dimscm RRing1RBaseR1RMatR=
13 7 12 mpdan RRing1RMatR=
14 13 eqcomd RRing=1RMatR
15 7 10 14 rspcedvd RRingcBaseR=cMatR
16 11 mat0dimid RRing1MatR=
17 16 oveq2d RRingcMatR1MatR=cMatR
18 17 eqeq2d RRing=cMatR1MatR=cMatR
19 18 rexbidv RRingcBaseR=cMatR1MatRcBaseR=cMatR
20 15 19 mpbird RRingcBaseR=cMatR1MatR
21 0fin Fin
22 eqid BaseMatR=BaseMatR
23 eqid 1MatR=1MatR
24 eqid MatR=MatR
25 eqid ScMatR=ScMatR
26 5 11 22 23 24 25 scmatel FinRRingScMatRBaseMatRcBaseR=cMatR1MatR
27 21 26 mpan RRingScMatRBaseMatRcBaseR=cMatR1MatR
28 4 20 27 mpbir2and RRingScMatR