Metamath Proof Explorer


Theorem matecl

Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018)

Ref Expression
Hypotheses matecl.a A=NMatR
matecl.k K=BaseR
Assertion matecl INJNMBaseAIMJK

Proof

Step Hyp Ref Expression
1 matecl.a A=NMatR
2 matecl.k K=BaseR
3 eqid BaseA=BaseA
4 1 3 matrcl MBaseANFinRV
5 4 3ad2ant3 INJNMBaseANFinRV
6 1 2 matbas2 NFinRVKN×N=BaseA
7 6 eqcomd NFinRVBaseA=KN×N
8 7 eleq2d NFinRVMBaseAMKN×N
9 2 fvexi KV
10 9 a1i RVKV
11 sqxpexg NFinN×NV
12 elmapg KVN×NVMKN×NM:N×NK
13 10 11 12 syl2anr NFinRVMKN×NM:N×NK
14 ffnov M:N×NKMFnN×NiNjNiMjK
15 oveq1 i=IiMj=IMj
16 15 eleq1d i=IiMjKIMjK
17 oveq2 j=JIMj=IMJ
18 17 eleq1d j=JIMjKIMJK
19 16 18 rspc2v INJNiNjNiMjKIMJK
20 19 com12 iNjNiMjKINJNIMJK
21 20 adantl MFnN×NiNjNiMjKINJNIMJK
22 21 a1i NFinRVMFnN×NiNjNiMjKINJNIMJK
23 14 22 biimtrid NFinRVM:N×NKINJNIMJK
24 13 23 sylbid NFinRVMKN×NINJNIMJK
25 8 24 sylbid NFinRVMBaseAINJNIMJK
26 25 com13 INJNMBaseANFinRVIMJK
27 26 ex INJNMBaseANFinRVIMJK
28 27 3imp1 INJNMBaseANFinRVIMJK
29 5 28 mpdan INJNMBaseAIMJK