Metamath Proof Explorer


Theorem matvsca2

Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses matvsca2.a A=NMatR
matvsca2.b B=BaseA
matvsca2.k K=BaseR
matvsca2.v ·˙=A
matvsca2.t ×˙=R
matvsca2.c C=N×N
Assertion matvsca2 XKYBX·˙Y=C×X×˙fY

Proof

Step Hyp Ref Expression
1 matvsca2.a A=NMatR
2 matvsca2.b B=BaseA
3 matvsca2.k K=BaseR
4 matvsca2.v ·˙=A
5 matvsca2.t ×˙=R
6 matvsca2.c C=N×N
7 1 2 matrcl YBNFinRV
8 7 adantl XKYBNFinRV
9 eqid RfreeLModN×N=RfreeLModN×N
10 1 9 matvsca NFinRVRfreeLModN×N=A
11 8 10 syl XKYBRfreeLModN×N=A
12 11 4 eqtr4di XKYBRfreeLModN×N=·˙
13 12 oveqd XKYBXRfreeLModN×NY=X·˙Y
14 eqid BaseRfreeLModN×N=BaseRfreeLModN×N
15 8 simpld XKYBNFin
16 xpfi NFinNFinN×NFin
17 15 15 16 syl2anc XKYBN×NFin
18 simpl XKYBXK
19 simpr XKYBYB
20 1 9 matbas NFinRVBaseRfreeLModN×N=BaseA
21 8 20 syl XKYBBaseRfreeLModN×N=BaseA
22 21 2 eqtr4di XKYBBaseRfreeLModN×N=B
23 19 22 eleqtrrd XKYBYBaseRfreeLModN×N
24 eqid RfreeLModN×N=RfreeLModN×N
25 9 14 3 17 18 23 24 5 frlmvscafval XKYBXRfreeLModN×NY=N×N×X×˙fY
26 6 xpeq1i C×X=N×N×X
27 26 oveq1i C×X×˙fY=N×N×X×˙fY
28 25 27 eqtr4di XKYBXRfreeLModN×NY=C×X×˙fY
29 13 28 eqtr3d XKYBX·˙Y=C×X×˙fY