Metamath Proof Explorer


Theorem maxidlval

Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011)

Ref Expression
Hypotheses maxidlval.1 G = 1 st R
maxidlval.2 X = ran G
Assertion maxidlval R RingOps MaxIdl R = i Idl R | i X j Idl R i j j = i j = X

Proof

Step Hyp Ref Expression
1 maxidlval.1 G = 1 st R
2 maxidlval.2 X = ran G
3 fveq2 r = R Idl r = Idl R
4 fveq2 r = R 1 st r = 1 st R
5 4 1 eqtr4di r = R 1 st r = G
6 5 rneqd r = R ran 1 st r = ran G
7 6 2 eqtr4di r = R ran 1 st r = X
8 7 neeq2d r = R i ran 1 st r i X
9 7 eqeq2d r = R j = ran 1 st r j = X
10 9 orbi2d r = R j = i j = ran 1 st r j = i j = X
11 10 imbi2d r = R i j j = i j = ran 1 st r i j j = i j = X
12 3 11 raleqbidv r = R j Idl r i j j = i j = ran 1 st r j Idl R i j j = i j = X
13 8 12 anbi12d r = R i ran 1 st r j Idl r i j j = i j = ran 1 st r i X j Idl R i j j = i j = X
14 3 13 rabeqbidv r = R i Idl r | i ran 1 st r j Idl r i j j = i j = ran 1 st r = i Idl R | i X j Idl R i j j = i j = X
15 df-maxidl MaxIdl = r RingOps i Idl r | i ran 1 st r j Idl r i j j = i j = ran 1 st r
16 fvex Idl R V
17 16 rabex i Idl R | i X j Idl R i j j = i j = X V
18 14 15 17 fvmpt R RingOps MaxIdl R = i Idl R | i X j Idl R i j j = i j = X