Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | maxprmfct.1 | |
|
Assertion | maxprmfct | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxprmfct.1 | |
|
2 | 1 | ssrab3 | |
3 | prmz | |
|
4 | 3 | ssriv | |
5 | 2 4 | sstri | |
6 | 5 | a1i | |
7 | exprmfct | |
|
8 | breq1 | |
|
9 | 8 1 | elrab2 | |
10 | 9 | exbii | |
11 | n0 | |
|
12 | df-rex | |
|
13 | 10 11 12 | 3bitr4ri | |
14 | 7 13 | sylib | |
15 | eluzelz | |
|
16 | eluz2nn | |
|
17 | 3 | anim1i | |
18 | 9 17 | sylbi | |
19 | dvdsle | |
|
20 | 19 | expcom | |
21 | 20 | impd | |
22 | 18 21 | syl5 | |
23 | 22 | ralrimiv | |
24 | 16 23 | syl | |
25 | brralrspcev | |
|
26 | 15 24 25 | syl2anc | |
27 | 6 14 26 | 3jca | |
28 | suprzcl2 | |
|
29 | 27 28 | jccir | |