Metamath Proof Explorer


Theorem maxprmfct

Description: The set of prime factors of an integer greater than or equal to 2 satisfies the conditions to have a supremum, and that supremum is a member of the set. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Hypothesis maxprmfct.1 S=z|zN
Assertion maxprmfct N2SSxySyxsupS<S

Proof

Step Hyp Ref Expression
1 maxprmfct.1 S=z|zN
2 1 ssrab3 S
3 prmz yy
4 3 ssriv
5 2 4 sstri S
6 5 a1i N2S
7 exprmfct N2yyN
8 breq1 z=yzNyN
9 8 1 elrab2 ySyyN
10 9 exbii yySyyyN
11 n0 SyyS
12 df-rex yyNyyyN
13 10 11 12 3bitr4ri yyNS
14 7 13 sylib N2S
15 eluzelz N2N
16 eluz2nn N2N
17 3 anim1i yyNyyN
18 9 17 sylbi ySyyN
19 dvdsle yNyNyN
20 19 expcom NyyNyN
21 20 impd NyyNyN
22 18 21 syl5 NySyN
23 22 ralrimiv NySyN
24 16 23 syl N2ySyN
25 brralrspcev NySyNxySyx
26 15 24 25 syl2anc N2xySyx
27 6 14 26 3jca N2SSxySyx
28 suprzcl2 SSxySyxsupS<S
29 27 28 jccir N2SSxySyxsupS<S