Metamath Proof Explorer


Theorem mbfneg

Description: The negative of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Jul-2014)

Ref Expression
Hypotheses mbfneg.1 φxABV
mbfneg.2 φxABMblFn
Assertion mbfneg φxABMblFn

Proof

Step Hyp Ref Expression
1 mbfneg.1 φxABV
2 mbfneg.2 φxABMblFn
3 eqid xAB=xAB
4 3 1 dmmptd φdomxAB=A
5 2 dmexd φdomxABV
6 4 5 eqeltrrd φAV
7 neg1rr 1
8 7 a1i φxA1
9 fconstmpt A×1=xA1
10 9 a1i φA×1=xA1
11 eqidd φxAB=xAB
12 6 8 1 10 11 offval2 φA×1×fxAB=xA-1B
13 2 1 mbfmptcl φxAB
14 13 mulm1d φxA-1B=B
15 14 mpteq2dva φxA-1B=xAB
16 12 15 eqtrd φA×1×fxAB=xAB
17 7 a1i φ1
18 13 fmpttd φxAB:A
19 2 17 18 mbfmulc2re φA×1×fxABMblFn
20 16 19 eqeltrrd φxABMblFn