Metamath Proof Explorer


Theorem mdetfval1

Description: First substitution of an alternative determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by AV, 27-Dec-2018)

Ref Expression
Hypotheses mdetfval1.d D=NmaDetR
mdetfval1.a A=NMatR
mdetfval1.b B=BaseA
mdetfval1.p P=BaseSymGrpN
mdetfval1.y Y=ℤRHomR
mdetfval1.s S=pmSgnN
mdetfval1.t ·˙=R
mdetfval1.u U=mulGrpR
Assertion mdetfval1 D=mBRpPYSp·˙UxNpxmx

Proof

Step Hyp Ref Expression
1 mdetfval1.d D=NmaDetR
2 mdetfval1.a A=NMatR
3 mdetfval1.b B=BaseA
4 mdetfval1.p P=BaseSymGrpN
5 mdetfval1.y Y=ℤRHomR
6 mdetfval1.s S=pmSgnN
7 mdetfval1.t ·˙=R
8 mdetfval1.u U=mulGrpR
9 1 2 3 4 5 6 7 8 mdetfval D=mBRpPYSp·˙UxNpxmx
10 4 6 cofipsgn NFinpPYSp=YSp
11 10 oveq1d NFinpPYSp·˙UxNpxmx=YSp·˙UxNpxmx
12 11 mpteq2dva NFinpPYSp·˙UxNpxmx=pPYSp·˙UxNpxmx
13 12 oveq2d NFinRpPYSp·˙UxNpxmx=RpPYSp·˙UxNpxmx
14 13 mpteq2dv NFinmBRpPYSp·˙UxNpxmx=mBRpPYSp·˙UxNpxmx
15 9 14 eqtrid NFinD=mBRpPYSp·˙UxNpxmx
16 df-nel NFin¬NFin
17 1 nfimdetndef NFinD=
18 2 fveq2i BaseA=BaseNMatR
19 3 18 eqtri B=BaseNMatR
20 16 biimpi NFin¬NFin
21 20 intnanrd NFin¬NFinRV
22 matbas0 ¬NFinRVBaseNMatR=
23 21 22 syl NFinBaseNMatR=
24 19 23 eqtrid NFinB=
25 24 mpteq1d NFinmBRpPYSp·˙UxNpxmx=mRpPYSp·˙UxNpxmx
26 mpt0 mRpPYSp·˙UxNpxmx=
27 25 26 eqtrdi NFinmBRpPYSp·˙UxNpxmx=
28 17 27 eqtr4d NFinD=mBRpPYSp·˙UxNpxmx
29 16 28 sylbir ¬NFinD=mBRpPYSp·˙UxNpxmx
30 15 29 pm2.61i D=mBRpPYSp·˙UxNpxmx