Description: First substitution of an alternative determinant definition. (Contributed by Stefan O'Rear, 9-Sep-2015) (Revised by AV, 27-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdetfval1.d | |
|
mdetfval1.a | |
||
mdetfval1.b | |
||
mdetfval1.p | |
||
mdetfval1.y | |
||
mdetfval1.s | |
||
mdetfval1.t | |
||
mdetfval1.u | |
||
Assertion | mdetfval1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetfval1.d | |
|
2 | mdetfval1.a | |
|
3 | mdetfval1.b | |
|
4 | mdetfval1.p | |
|
5 | mdetfval1.y | |
|
6 | mdetfval1.s | |
|
7 | mdetfval1.t | |
|
8 | mdetfval1.u | |
|
9 | 1 2 3 4 5 6 7 8 | mdetfval | |
10 | 4 6 | cofipsgn | |
11 | 10 | oveq1d | |
12 | 11 | mpteq2dva | |
13 | 12 | oveq2d | |
14 | 13 | mpteq2dv | |
15 | 9 14 | eqtrid | |
16 | df-nel | |
|
17 | 1 | nfimdetndef | |
18 | 2 | fveq2i | |
19 | 3 18 | eqtri | |
20 | 16 | biimpi | |
21 | 20 | intnanrd | |
22 | matbas0 | |
|
23 | 21 22 | syl | |
24 | 19 23 | eqtrid | |
25 | 24 | mpteq1d | |
26 | mpt0 | |
|
27 | 25 26 | eqtrdi | |
28 | 17 27 | eqtr4d | |
29 | 16 28 | sylbir | |
30 | 15 29 | pm2.61i | |