Metamath Proof Explorer


Theorem mdetlap1

Description: A Laplace expansion of the determinant of a matrix, using the adjunct (cofactor) matrix. (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses mdetlap1.a A=NMatR
mdetlap1.b B=BaseA
mdetlap1.d D=NmaDetR
mdetlap1.k K=NmaAdjuR
mdetlap1.t ·˙=R
Assertion mdetlap1 RCRingMBINDM=RjNIMj·˙jKMI

Proof

Step Hyp Ref Expression
1 mdetlap1.a A=NMatR
2 mdetlap1.b B=BaseA
3 mdetlap1.d D=NmaDetR
4 mdetlap1.k K=NmaAdjuR
5 mdetlap1.t ·˙=R
6 simp2 RCRingMBINMB
7 1 2 matmpo MBM=iN,jNiMj
8 eqid N=N
9 simpr i=Ii=I
10 9 eqcomd i=II=i
11 10 oveq1d i=IIMj=iMj
12 eqidd ¬i=IiMj=iMj
13 11 12 ifeqda ifi=IIMjiMj=iMj
14 13 mptru ifi=IIMjiMj=iMj
15 8 8 14 mpoeq123i iN,jNifi=IIMjiMj=iN,jNiMj
16 7 15 eqtr4di MBM=iN,jNifi=IIMjiMj
17 16 fveq2d MBDM=DiN,jNifi=IIMjiMj
18 6 17 syl RCRingMBINDM=DiN,jNifi=IIMjiMj
19 eqid BaseR=BaseR
20 simp1 RCRingMBINRCRing
21 simpl3 RCRingMBINjNIN
22 simpr RCRingMBINjNjN
23 6 2 eleqtrdi RCRingMBINMBaseA
24 23 adantr RCRingMBINjNMBaseA
25 1 19 matecl INjNMBaseAIMjBaseR
26 21 22 24 25 syl3anc RCRingMBINjNIMjBaseR
27 simp3 RCRingMBININ
28 1 4 2 3 5 19 6 20 26 27 madugsum RCRingMBINRjNIMj·˙jKMI=DiN,jNifi=IIMjiMj
29 18 28 eqtr4d RCRingMBINDM=RjNIMj·˙jKMI