Description: A sublattice condition that transfers the modular pair property. Exercise 12 of Kalmbach p. 103. Also Lemma 1.5.3 of MaedaMaeda p. 2. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mdsl0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 | |
|
2 | 1 | com12 | |
3 | 2 | ad2antlr | |
4 | 3 | ad2antlr | |
5 | chlej2 | |
|
6 | ss2in | |
|
7 | 6 | ex | |
8 | 5 7 | syl | |
9 | 8 | ex | |
10 | 9 | 3expia | |
11 | 10 | ancoms | |
12 | 11 | ad2ant2r | |
13 | 12 | imp43 | |
14 | 13 | adantrr | |
15 | oveq2 | |
|
16 | chj0 | |
|
17 | 15 16 | sylan9eqr | |
18 | 17 | adantl | |
19 | chincl | |
|
20 | chub1 | |
|
21 | 20 | ancoms | |
22 | 19 21 | sylan | |
23 | 22 | adantrr | |
24 | 18 23 | eqsstrd | |
25 | 24 | adantll | |
26 | 25 | anassrs | |
27 | 26 | adantrl | |
28 | sstr2 | |
|
29 | sstr2 | |
|
30 | 28 29 | syl6 | |
31 | 30 | com23 | |
32 | 14 27 31 | sylc | |
33 | 32 | an32s | |
34 | 4 33 | imim12d | |
35 | 34 | ralimdva | |
36 | mdbr2 | |
|
37 | 36 | ad2antrr | |
38 | mdbr2 | |
|
39 | 38 | ad2antlr | |
40 | 35 37 39 | 3imtr4d | |
41 | 40 | expimpd | |