Metamath Proof Explorer


Theorem mdsl0

Description: A sublattice condition that transfers the modular pair property. Exercise 12 of Kalmbach p. 103. Also Lemma 1.5.3 of MaedaMaeda p. 2. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion mdsl0 ACBCCCDCCADBAB=0A𝑀BC𝑀D

Proof

Step Hyp Ref Expression
1 sstr2 xDDBxB
2 1 com12 DBxDxB
3 2 ad2antlr CADBAB=0xDxB
4 3 ad2antlr ACBCCCDCCADBAB=0xCxDxB
5 chlej2 CCACxCCAxCxA
6 ss2in xCxADBxCDxAB
7 6 ex xCxADBxCDxAB
8 5 7 syl CCACxCCADBxCDxAB
9 8 ex CCACxCCADBxCDxAB
10 9 3expia CCACxCCADBxCDxAB
11 10 ancoms ACCCxCCADBxCDxAB
12 11 ad2ant2r ACBCCCDCxCCADBxCDxAB
13 12 imp43 ACBCCCDCxCCADBxCDxAB
14 13 adantrr ACBCCCDCxCCADBAB=0xCDxAB
15 oveq2 AB=0xAB=x0
16 chj0 xCx0=x
17 15 16 sylan9eqr xCAB=0xAB=x
18 17 adantl CCDCxCAB=0xAB=x
19 chincl CCDCCDC
20 chub1 xCCDCxxCD
21 20 ancoms CDCxCxxCD
22 19 21 sylan CCDCxCxxCD
23 22 adantrr CCDCxCAB=0xxCD
24 18 23 eqsstrd CCDCxCAB=0xABxCD
25 24 adantll ACBCCCDCxCAB=0xABxCD
26 25 anassrs ACBCCCDCxCAB=0xABxCD
27 26 adantrl ACBCCCDCxCCADBAB=0xABxCD
28 sstr2 xCDxABxABxABxCDxAB
29 sstr2 xCDxABxABxCDxCDxCD
30 28 29 syl6 xCDxABxABxABxABxCDxCDxCD
31 30 com23 xCDxABxABxCDxABxABxCDxCD
32 14 27 31 sylc ACBCCCDCxCCADBAB=0xABxABxCDxCD
33 32 an32s ACBCCCDCCADBAB=0xCxABxABxCDxCD
34 4 33 imim12d ACBCCCDCCADBAB=0xCxBxABxABxDxCDxCD
35 34 ralimdva ACBCCCDCCADBAB=0xCxBxABxABxCxDxCDxCD
36 mdbr2 ACBCA𝑀BxCxBxABxAB
37 36 ad2antrr ACBCCCDCCADBAB=0A𝑀BxCxBxABxAB
38 mdbr2 CCDCC𝑀DxCxDxCDxCD
39 38 ad2antlr ACBCCCDCCADBAB=0C𝑀DxCxDxCDxCD
40 35 37 39 3imtr4d ACBCCCDCCADBAB=0A𝑀BC𝑀D
41 40 expimpd ACBCCCDCCADBAB=0A𝑀BC𝑀D