Metamath Proof Explorer


Theorem mdslmd2i

Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2 (join version). (Contributed by NM, 29-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslmd.1 AC
mdslmd.2 BC
mdslmd.3 CC
mdslmd.4 DC
Assertion mdslmd2i A𝑀BB𝑀*AABCDCDBC𝑀DCA𝑀DA

Proof

Step Hyp Ref Expression
1 mdslmd.1 AC
2 mdslmd.2 BC
3 mdslmd.3 CC
4 mdslmd.4 DC
5 3 4 chjcli CDC
6 5 2 1 chlej1i CDBCDABA
7 3 4 1 chjjdiri CDA=CADA
8 2 1 chjcomi BA=AB
9 6 7 8 3sstr3g CDBCADAAB
10 9 adantl ABCDCDBCADAAB
11 1 3 chub2i ACA
12 1 4 chub2i ADA
13 11 12 ssini ACADA
14 10 13 jctil ABCDCDBACADACADAAB
15 3 1 chjcli CAC
16 4 1 chjcli DAC
17 1 2 15 16 mdslmd1i A𝑀BB𝑀*AACADACADAABCA𝑀DACAB𝑀DAB
18 14 17 sylan2 A𝑀BB𝑀*AABCDCDBCA𝑀DACAB𝑀DAB
19 id A𝑀BA𝑀B
20 inss1 CDC
21 sstr ABCDCDCABC
22 20 21 mpan2 ABCDABC
23 3 4 chub1i CCD
24 sstr CCDCDBCB
25 23 24 mpan CDBCB
26 1 2 3 3pm3.2i ACBCCC
27 mdsl3 ACBCCCA𝑀BABCCBCAB=C
28 26 27 mpan A𝑀BABCCBCAB=C
29 19 22 25 28 syl3an A𝑀BABCDCDBCAB=C
30 inss2 CDD
31 sstr ABCDCDDABD
32 30 31 mpan2 ABCDABD
33 4 3 chub2i DCD
34 sstr DCDCDBDB
35 33 34 mpan CDBDB
36 1 2 4 3pm3.2i ACBCDC
37 mdsl3 ACBCDCA𝑀BABDDBDAB=D
38 36 37 mpan A𝑀BABDDBDAB=D
39 19 32 35 38 syl3an A𝑀BABCDCDBDAB=D
40 29 39 breq12d A𝑀BABCDCDBCAB𝑀DABC𝑀D
41 40 3expb A𝑀BABCDCDBCAB𝑀DABC𝑀D
42 41 adantlr A𝑀BB𝑀*AABCDCDBCAB𝑀DABC𝑀D
43 18 42 bitr2d A𝑀BB𝑀*AABCDCDBC𝑀DCA𝑀DA