Metamath Proof Explorer


Theorem mdsymlem1

Description: Lemma for mdsymi . (Contributed by NM, 1-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1 A C
mdsymlem1.2 B C
mdsymlem1.3 C = A p
Assertion mdsymlem1 p C B C A B 𝑀 * A p A B p A

Proof

Step Hyp Ref Expression
1 mdsymlem1.1 A C
2 mdsymlem1.2 B C
3 mdsymlem1.3 C = A p
4 chub2 p C A C p A p
5 1 4 mpan2 p C p A p
6 5 3 sseqtrrdi p C p C
7 1 2 chjcomi A B = B A
8 7 sseq2i p A B p B A
9 8 biimpi p A B p B A
10 6 9 anim12i p C p A B p C p B A
11 ssin p C p B A p C B A
12 10 11 sylib p C p A B p C B A
13 12 ad2ant2rl p C B C A B 𝑀 * A p A B p C B A
14 chjcl A C p C A p C
15 1 14 mpan p C A p C
16 3 15 eqeltrid p C C C
17 16 adantr p C B 𝑀 * A C C
18 chub1 A C p C A A p
19 1 18 mpan p C A A p
20 19 3 sseqtrrdi p C A C
21 20 anim2i B 𝑀 * A p C B 𝑀 * A A C
22 21 ancoms p C B 𝑀 * A B 𝑀 * A A C
23 dmdi B C A C C C B 𝑀 * A A C C B A = C B A
24 2 23 mp3anl1 A C C C B 𝑀 * A A C C B A = C B A
25 1 24 mpanl1 C C B 𝑀 * A A C C B A = C B A
26 17 22 25 syl2anc p C B 𝑀 * A C B A = C B A
27 26 adantlr p C B C A B 𝑀 * A C B A = C B A
28 incom C B = B C
29 28 oveq1i C B A = B C A
30 chincl B C C C B C C
31 2 30 mpan C C B C C
32 chlejb1 B C C A C B C A B C A = A
33 1 32 mpan2 B C C B C A B C A = A
34 16 31 33 3syl p C B C A B C A = A
35 34 biimpa p C B C A B C A = A
36 29 35 eqtrid p C B C A C B A = A
37 36 adantr p C B C A B 𝑀 * A C B A = A
38 27 37 eqtr3d p C B C A B 𝑀 * A C B A = A
39 38 adantrr p C B C A B 𝑀 * A p A B C B A = A
40 13 39 sseqtrd p C B C A B 𝑀 * A p A B p A