Metamath Proof Explorer


Theorem meassle

Description: The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses meassle.m φ M Meas
meassle.x S = dom M
meassle.a φ A S
meassle.b φ B S
meassle.ss φ A B
Assertion meassle φ M A M B

Proof

Step Hyp Ref Expression
1 meassle.m φ M Meas
2 meassle.x S = dom M
3 meassle.a φ A S
4 meassle.b φ B S
5 meassle.ss φ A B
6 1 2 3 meaxrcl φ M A *
7 1 2 dmmeasal φ S SAlg
8 saldifcl2 S SAlg B S A S B A S
9 7 4 3 8 syl3anc φ B A S
10 1 2 9 meacl φ M B A 0 +∞
11 6 10 xadd0ge φ M A M A + 𝑒 M B A
12 undif A B A B A = B
13 12 biimpi A B A B A = B
14 5 13 syl φ A B A = B
15 14 fveq2d φ M A B A = M B
16 15 eqcomd φ M B = M A B A
17 disjdif A B A =
18 17 a1i φ A B A =
19 1 2 3 9 18 meadjun φ M A B A = M A + 𝑒 M B A
20 16 19 eqtr2d φ M A + 𝑒 M B A = M B
21 11 20 breqtrd φ M A M B