Metamath Proof Explorer


Theorem metakunt18

Description: Disjoint domains and codomains. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt18.1 φ M
metakunt18.2 φ I
metakunt18.3 φ I M
Assertion metakunt18 φ 1 I 1 I M 1 = 1 I 1 M = I M 1 M = M - I + 1 M 1 1 M I = M - I + 1 M 1 M = 1 M I M =

Proof

Step Hyp Ref Expression
1 metakunt18.1 φ M
2 metakunt18.2 φ I
3 metakunt18.3 φ I M
4 2 nnred φ I
5 4 ltm1d φ I 1 < I
6 fzdisj I 1 < I 1 I 1 I M 1 =
7 5 6 syl φ 1 I 1 I M 1 =
8 1 nnzd φ M
9 fzsn M M M = M
10 8 9 syl φ M M = M
11 10 eqcomd φ M = M M
12 11 ineq2d φ 1 I 1 M = 1 I 1 M M
13 2 nnzd φ I
14 zlem1lt I M I M I 1 < M
15 13 8 14 syl2anc φ I M I 1 < M
16 3 15 mpbid φ I 1 < M
17 fzdisj I 1 < M 1 I 1 M M =
18 16 17 syl φ 1 I 1 M M =
19 12 18 eqtrd φ 1 I 1 M =
20 11 ineq2d φ I M 1 M = I M 1 M M
21 1 nnred φ M
22 21 ltm1d φ M 1 < M
23 fzdisj M 1 < M I M 1 M M =
24 22 23 syl φ I M 1 M M =
25 20 24 eqtrd φ I M 1 M =
26 7 19 25 3jca φ 1 I 1 I M 1 = 1 I 1 M = I M 1 M =
27 incom M - I + 1 M 1 1 M I = 1 M I M - I + 1 M 1
28 27 a1i φ M - I + 1 M 1 1 M I = 1 M I M - I + 1 M 1
29 21 4 resubcld φ M I
30 29 ltp1d φ M I < M - I + 1
31 fzdisj M I < M - I + 1 1 M I M - I + 1 M 1 =
32 30 31 syl φ 1 M I M - I + 1 M 1 =
33 28 32 eqtrd φ M - I + 1 M 1 1 M I =
34 11 ineq2d φ M - I + 1 M 1 M = M - I + 1 M 1 M M
35 fzdisj M 1 < M M - I + 1 M 1 M M =
36 22 35 syl φ M - I + 1 M 1 M M =
37 34 36 eqtrd φ M - I + 1 M 1 M =
38 11 ineq2d φ 1 M I M = 1 M I M M
39 2 nnrpd φ I +
40 21 39 ltsubrpd φ M I < M
41 fzdisj M I < M 1 M I M M =
42 40 41 syl φ 1 M I M M =
43 38 42 eqtrd φ 1 M I M =
44 33 37 43 3jca φ M - I + 1 M 1 1 M I = M - I + 1 M 1 M = 1 M I M =
45 26 44 jca φ 1 I 1 I M 1 = 1 I 1 M = I M 1 M = M - I + 1 M 1 1 M I = M - I + 1 M 1 M = 1 M I M =