Description: Disjoint domains and codomains. (Contributed by metakunt, 28-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt18.1 | |
|
metakunt18.2 | |
||
metakunt18.3 | |
||
Assertion | metakunt18 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt18.1 | |
|
2 | metakunt18.2 | |
|
3 | metakunt18.3 | |
|
4 | 2 | nnred | |
5 | 4 | ltm1d | |
6 | fzdisj | |
|
7 | 5 6 | syl | |
8 | 1 | nnzd | |
9 | fzsn | |
|
10 | 8 9 | syl | |
11 | 10 | eqcomd | |
12 | 11 | ineq2d | |
13 | 2 | nnzd | |
14 | zlem1lt | |
|
15 | 13 8 14 | syl2anc | |
16 | 3 15 | mpbid | |
17 | fzdisj | |
|
18 | 16 17 | syl | |
19 | 12 18 | eqtrd | |
20 | 11 | ineq2d | |
21 | 1 | nnred | |
22 | 21 | ltm1d | |
23 | fzdisj | |
|
24 | 22 23 | syl | |
25 | 20 24 | eqtrd | |
26 | 7 19 25 | 3jca | |
27 | incom | |
|
28 | 27 | a1i | |
29 | 21 4 | resubcld | |
30 | 29 | ltp1d | |
31 | fzdisj | |
|
32 | 30 31 | syl | |
33 | 28 32 | eqtrd | |
34 | 11 | ineq2d | |
35 | fzdisj | |
|
36 | 22 35 | syl | |
37 | 34 36 | eqtrd | |
38 | 11 | ineq2d | |
39 | 2 | nnrpd | |
40 | 21 39 | ltsubrpd | |
41 | fzdisj | |
|
42 | 40 41 | syl | |
43 | 38 42 | eqtrd | |
44 | 33 37 43 | 3jca | |
45 | 26 44 | jca | |