Metamath Proof Explorer


Theorem metakunt18

Description: Disjoint domains and codomains. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt18.1 φM
metakunt18.2 φI
metakunt18.3 φIM
Assertion metakunt18 φ1I1IM1=1I1M=IM1M=M-I+1M11MI=M-I+1M1M=1MIM=

Proof

Step Hyp Ref Expression
1 metakunt18.1 φM
2 metakunt18.2 φI
3 metakunt18.3 φIM
4 2 nnred φI
5 4 ltm1d φI1<I
6 fzdisj I1<I1I1IM1=
7 5 6 syl φ1I1IM1=
8 1 nnzd φM
9 fzsn MMM=M
10 8 9 syl φMM=M
11 10 eqcomd φM=MM
12 11 ineq2d φ1I1M=1I1MM
13 2 nnzd φI
14 zlem1lt IMIMI1<M
15 13 8 14 syl2anc φIMI1<M
16 3 15 mpbid φI1<M
17 fzdisj I1<M1I1MM=
18 16 17 syl φ1I1MM=
19 12 18 eqtrd φ1I1M=
20 11 ineq2d φIM1M=IM1MM
21 1 nnred φM
22 21 ltm1d φM1<M
23 fzdisj M1<MIM1MM=
24 22 23 syl φIM1MM=
25 20 24 eqtrd φIM1M=
26 7 19 25 3jca φ1I1IM1=1I1M=IM1M=
27 incom M-I+1M11MI=1MIM-I+1M1
28 27 a1i φM-I+1M11MI=1MIM-I+1M1
29 21 4 resubcld φMI
30 29 ltp1d φMI<M-I+1
31 fzdisj MI<M-I+11MIM-I+1M1=
32 30 31 syl φ1MIM-I+1M1=
33 28 32 eqtrd φM-I+1M11MI=
34 11 ineq2d φM-I+1M1M=M-I+1M1MM
35 fzdisj M1<MM-I+1M1MM=
36 22 35 syl φM-I+1M1MM=
37 34 36 eqtrd φM-I+1M1M=
38 11 ineq2d φ1MIM=1MIMM
39 2 nnrpd φI+
40 21 39 ltsubrpd φMI<M
41 fzdisj MI<M1MIMM=
42 40 41 syl φ1MIMM=
43 38 42 eqtrd φ1MIM=
44 33 37 43 3jca φM-I+1M11MI=M-I+1M1M=1MIM=
45 26 44 jca φ1I1IM1=1I1M=IM1M=M-I+1M11MI=M-I+1M1M=1MIM=