Metamath Proof Explorer


Theorem metakunt3

Description: Value of A. (Contributed by metakunt, 23-May-2024)

Ref Expression
Hypotheses metakunt3.1 φ M
metakunt3.2 φ I
metakunt3.3 φ I M
metakunt3.4 A = x 1 M if x = I M if x < I x x 1
metakunt3.5 φ X 1 M
Assertion metakunt3 φ A X = if X = I M if X < I X X 1

Proof

Step Hyp Ref Expression
1 metakunt3.1 φ M
2 metakunt3.2 φ I
3 metakunt3.3 φ I M
4 metakunt3.4 A = x 1 M if x = I M if x < I x x 1
5 metakunt3.5 φ X 1 M
6 4 a1i φ A = x 1 M if x = I M if x < I x x 1
7 eqeq1 x = X x = I X = I
8 breq1 x = X x < I X < I
9 id x = X x = X
10 oveq1 x = X x 1 = X 1
11 8 9 10 ifbieq12d x = X if x < I x x 1 = if X < I X X 1
12 7 11 ifbieq2d x = X if x = I M if x < I x x 1 = if X = I M if X < I X X 1
13 12 adantl φ x = X if x = I M if x < I x x 1 = if X = I M if X < I X X 1
14 1 nnzd φ M
15 5 elfzelzd φ X
16 1zzd φ 1
17 15 16 zsubcld φ X 1
18 15 17 ifcld φ if X < I X X 1
19 14 18 ifcld φ if X = I M if X < I X X 1
20 6 13 5 19 fvmptd φ A X = if X = I M if X < I X X 1