Metamath Proof Explorer


Theorem metakunt31

Description: Construction of one solution of the increment equation system. (Contributed by metakunt, 18-Jul-2024)

Ref Expression
Hypotheses metakunt31.1 φM
metakunt31.2 φI
metakunt31.3 φIM
metakunt31.4 φX1M
metakunt31.5 A=x1Mifx=IMifx<Ixx1
metakunt31.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
metakunt31.7 C=y1Mify=MIify<Iyy+1
metakunt31.8 G=ifIX+M-I10
metakunt31.9 H=ifIXI10
metakunt31.10 R=ifX=IXifX<IX+MI+GX-I+H
Assertion metakunt31 φCBAX=R

Proof

Step Hyp Ref Expression
1 metakunt31.1 φM
2 metakunt31.2 φI
3 metakunt31.3 φIM
4 metakunt31.4 φX1M
5 metakunt31.5 A=x1Mifx=IMifx<Ixx1
6 metakunt31.6 B=z1Mifz=MMifz<Iz+M-Iz+1-I
7 metakunt31.7 C=y1Mify=MIify<Iyy+1
8 metakunt31.8 G=ifIX+M-I10
9 metakunt31.9 H=ifIXI10
10 metakunt31.10 R=ifX=IXifX<IX+MI+GX-I+H
11 1 adantr φX=IM
12 2 adantr φX=II
13 3 adantr φX=IIM
14 simpr φX=IX=I
15 11 12 13 5 7 6 14 metakunt26 φX=ICBAX=X
16 14 iftrued φX=IifX=IXifX<IX+MI+GX-I+H=X
17 16 eqcomd φX=IX=ifX=IXifX<IX+MI+GX-I+H
18 15 17 eqtrd φX=ICBAX=ifX=IXifX<IX+MI+GX-I+H
19 10 eqcomi ifX=IXifX<IX+MI+GX-I+H=R
20 19 a1i φX=IifX=IXifX<IX+MI+GX-I+H=R
21 18 20 eqtrd φX=ICBAX=R
22 1 3ad2ant1 φ¬X=IX<IM
23 2 3ad2ant1 φ¬X=IX<II
24 3 3ad2ant1 φ¬X=IX<IIM
25 4 3ad2ant1 φ¬X=IX<IX1M
26 simp2 φ¬X=IX<I¬X=I
27 simp3 φ¬X=IX<IX<I
28 22 23 24 25 5 6 26 27 7 8 metakunt29 φ¬X=IX<ICBAX=X+MI+G
29 26 iffalsed φ¬X=IX<IifX=IXifX<IX+MI+GX-I+H=ifX<IX+MI+GX-I+H
30 27 iftrued φ¬X=IX<IifX<IX+MI+GX-I+H=X+MI+G
31 29 30 eqtrd φ¬X=IX<IifX=IXifX<IX+MI+GX-I+H=X+MI+G
32 31 eqcomd φ¬X=IX<IX+MI+G=ifX=IXifX<IX+MI+GX-I+H
33 28 32 eqtrd φ¬X=IX<ICBAX=ifX=IXifX<IX+MI+GX-I+H
34 19 a1i φ¬X=IX<IifX=IXifX<IX+MI+GX-I+H=R
35 33 34 eqtrd φ¬X=IX<ICBAX=R
36 35 3expa φ¬X=IX<ICBAX=R
37 1 3ad2ant1 φ¬X=I¬X<IM
38 2 3ad2ant1 φ¬X=I¬X<II
39 3 3ad2ant1 φ¬X=I¬X<IIM
40 4 3ad2ant1 φ¬X=I¬X<IX1M
41 simp2 φ¬X=I¬X<I¬X=I
42 simp3 φ¬X=I¬X<I¬X<I
43 37 38 39 40 5 6 41 42 7 9 metakunt30 φ¬X=I¬X<ICBAX=X-I+H
44 41 iffalsed φ¬X=I¬X<IifX=IXifX<IX+MI+GX-I+H=ifX<IX+MI+GX-I+H
45 42 iffalsed φ¬X=I¬X<IifX<IX+MI+GX-I+H=X-I+H
46 44 45 eqtrd φ¬X=I¬X<IifX=IXifX<IX+MI+GX-I+H=X-I+H
47 46 eqcomd φ¬X=I¬X<IX-I+H=ifX=IXifX<IX+MI+GX-I+H
48 43 47 eqtrd φ¬X=I¬X<ICBAX=ifX=IXifX<IX+MI+GX-I+H
49 19 a1i φ¬X=I¬X<IifX=IXifX<IX+MI+GX-I+H=R
50 48 49 eqtrd φ¬X=I¬X<ICBAX=R
51 50 3expa φ¬X=I¬X<ICBAX=R
52 36 51 pm2.61dan φ¬X=ICBAX=R
53 21 52 pm2.61dan φCBAX=R