Metamath Proof Explorer


Theorem metcnpi2

Description: Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 . (Contributed by NM, 16-Dec-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypotheses metcn.2 J=MetOpenC
metcn.4 K=MetOpenD
Assertion metcnpi2 C∞MetXD∞MetYFJCnPKPA+x+yXyCP<xFyDFP<A

Proof

Step Hyp Ref Expression
1 metcn.2 J=MetOpenC
2 metcn.4 K=MetOpenD
3 simpr C∞MetXD∞MetYFJCnPKPFJCnPKP
4 simpll C∞MetXD∞MetYFJCnPKPC∞MetX
5 simplr C∞MetXD∞MetYFJCnPKPD∞MetY
6 eqid J=J
7 6 cnprcl FJCnPKPPJ
8 7 adantl C∞MetXD∞MetYFJCnPKPPJ
9 1 mopnuni C∞MetXX=J
10 9 ad2antrr C∞MetXD∞MetYFJCnPKPX=J
11 8 10 eleqtrrd C∞MetXD∞MetYFJCnPKPPX
12 1 2 metcnp2 C∞MetXD∞MetYPXFJCnPKPF:XYz+x+yXyCP<xFyDFP<z
13 4 5 11 12 syl3anc C∞MetXD∞MetYFJCnPKPFJCnPKPF:XYz+x+yXyCP<xFyDFP<z
14 3 13 mpbid C∞MetXD∞MetYFJCnPKPF:XYz+x+yXyCP<xFyDFP<z
15 breq2 z=AFyDFP<zFyDFP<A
16 15 imbi2d z=AyCP<xFyDFP<zyCP<xFyDFP<A
17 16 rexralbidv z=Ax+yXyCP<xFyDFP<zx+yXyCP<xFyDFP<A
18 17 rspccv z+x+yXyCP<xFyDFP<zA+x+yXyCP<xFyDFP<A
19 14 18 simpl2im C∞MetXD∞MetYFJCnPKPA+x+yXyCP<xFyDFP<A
20 19 impr C∞MetXD∞MetYFJCnPKPA+x+yXyCP<xFyDFP<A