Metamath Proof Explorer


Theorem metcnpi3

Description: Epsilon-delta property of a metric space function continuous at P . A variation of metcnpi2 with non-strict ordering. (Contributed by NM, 16-Dec-2007) (Revised by Mario Carneiro, 13-Nov-2013)

Ref Expression
Hypotheses metcn.2 J=MetOpenC
metcn.4 K=MetOpenD
Assertion metcnpi3 C∞MetXD∞MetYFJCnPKPA+x+yXyCPxFyDFPA

Proof

Step Hyp Ref Expression
1 metcn.2 J=MetOpenC
2 metcn.4 K=MetOpenD
3 1 2 metcnpi2 C∞MetXD∞MetYFJCnPKPA+z+yXyCP<zFyDFP<A
4 rphalfcl z+z2+
5 4 ad2antrl C∞MetXD∞MetYFJCnPKPA+z+yXyCP<zFyDFP<Az2+
6 simplll C∞MetXD∞MetYFJCnPKPA+z+yXC∞MetX
7 simprr C∞MetXD∞MetYFJCnPKPA+z+yXyX
8 simplrl C∞MetXD∞MetYFJCnPKPA+z+yXFJCnPKP
9 eqid J=J
10 9 cnprcl FJCnPKPPJ
11 8 10 syl C∞MetXD∞MetYFJCnPKPA+z+yXPJ
12 1 mopnuni C∞MetXX=J
13 6 12 syl C∞MetXD∞MetYFJCnPKPA+z+yXX=J
14 11 13 eleqtrrd C∞MetXD∞MetYFJCnPKPA+z+yXPX
15 xmetcl C∞MetXyXPXyCP*
16 6 7 14 15 syl3anc C∞MetXD∞MetYFJCnPKPA+z+yXyCP*
17 4 ad2antrl C∞MetXD∞MetYFJCnPKPA+z+yXz2+
18 17 rpxrd C∞MetXD∞MetYFJCnPKPA+z+yXz2*
19 rpxr z+z*
20 19 ad2antrl C∞MetXD∞MetYFJCnPKPA+z+yXz*
21 rphalflt z+z2<z
22 21 ad2antrl C∞MetXD∞MetYFJCnPKPA+z+yXz2<z
23 xrlelttr yCP*z2*z*yCPz2z2<zyCP<z
24 23 expcomd yCP*z2*z*z2<zyCPz2yCP<z
25 24 imp yCP*z2*z*z2<zyCPz2yCP<z
26 16 18 20 22 25 syl31anc C∞MetXD∞MetYFJCnPKPA+z+yXyCPz2yCP<z
27 simpllr C∞MetXD∞MetYFJCnPKPA+z+yXD∞MetY
28 1 mopntopon C∞MetXJTopOnX
29 6 28 syl C∞MetXD∞MetYFJCnPKPA+z+yXJTopOnX
30 2 mopntopon D∞MetYKTopOnY
31 27 30 syl C∞MetXD∞MetYFJCnPKPA+z+yXKTopOnY
32 cnpf2 JTopOnXKTopOnYFJCnPKPF:XY
33 29 31 8 32 syl3anc C∞MetXD∞MetYFJCnPKPA+z+yXF:XY
34 33 7 ffvelcdmd C∞MetXD∞MetYFJCnPKPA+z+yXFyY
35 33 14 ffvelcdmd C∞MetXD∞MetYFJCnPKPA+z+yXFPY
36 xmetcl D∞MetYFyYFPYFyDFP*
37 27 34 35 36 syl3anc C∞MetXD∞MetYFJCnPKPA+z+yXFyDFP*
38 simplrr C∞MetXD∞MetYFJCnPKPA+z+yXA+
39 38 rpxrd C∞MetXD∞MetYFJCnPKPA+z+yXA*
40 xrltle FyDFP*A*FyDFP<AFyDFPA
41 37 39 40 syl2anc C∞MetXD∞MetYFJCnPKPA+z+yXFyDFP<AFyDFPA
42 26 41 imim12d C∞MetXD∞MetYFJCnPKPA+z+yXyCP<zFyDFP<AyCPz2FyDFPA
43 42 anassrs C∞MetXD∞MetYFJCnPKPA+z+yXyCP<zFyDFP<AyCPz2FyDFPA
44 43 ralimdva C∞MetXD∞MetYFJCnPKPA+z+yXyCP<zFyDFP<AyXyCPz2FyDFPA
45 44 impr C∞MetXD∞MetYFJCnPKPA+z+yXyCP<zFyDFP<AyXyCPz2FyDFPA
46 breq2 x=z2yCPxyCPz2
47 46 rspceaimv z2+yXyCPz2FyDFPAx+yXyCPxFyDFPA
48 5 45 47 syl2anc C∞MetXD∞MetYFJCnPKPA+z+yXyCP<zFyDFP<Ax+yXyCPxFyDFPA
49 3 48 rexlimddv C∞MetXD∞MetYFJCnPKPA+x+yXyCPxFyDFPA