Metamath Proof Explorer


Theorem metidv

Description: A and B identify by the metric D if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion metidv D PsMet X A X B X A ~ Met D B A D B = 0

Proof

Step Hyp Ref Expression
1 eleq1 a = A a X A X
2 eleq1 b = B b X B X
3 1 2 bi2anan9 a = A b = B a X b X A X B X
4 oveq12 a = A b = B a D b = A D B
5 4 eqeq1d a = A b = B a D b = 0 A D B = 0
6 3 5 anbi12d a = A b = B a X b X a D b = 0 A X B X A D B = 0
7 eqid a b | a X b X a D b = 0 = a b | a X b X a D b = 0
8 6 7 brabga A X B X A a b | a X b X a D b = 0 B A X B X A D B = 0
9 8 adantl D PsMet X A X B X A a b | a X b X a D b = 0 B A X B X A D B = 0
10 metidval D PsMet X ~ Met D = a b | a X b X a D b = 0
11 10 adantr D PsMet X A X B X ~ Met D = a b | a X b X a D b = 0
12 11 breqd D PsMet X A X B X A ~ Met D B A a b | a X b X a D b = 0 B
13 ibar A X B X A D B = 0 A X B X A D B = 0
14 13 adantl D PsMet X A X B X A D B = 0 A X B X A D B = 0
15 9 12 14 3bitr4d D PsMet X A X B X A ~ Met D B A D B = 0