Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metdscn.f | |
|
metdscn.j | |
||
metnrmlem.1 | |
||
metnrmlem.2 | |
||
metnrmlem.3 | |
||
metnrmlem.4 | |
||
metnrmlem.u | |
||
Assertion | metnrmlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metdscn.f | |
|
2 | metdscn.j | |
|
3 | metnrmlem.1 | |
|
4 | metnrmlem.2 | |
|
5 | metnrmlem.3 | |
|
6 | metnrmlem.4 | |
|
7 | metnrmlem.u | |
|
8 | 2 | mopntop | |
9 | 3 8 | syl | |
10 | 3 | adantr | |
11 | eqid | |
|
12 | 11 | cldss | |
13 | 5 12 | syl | |
14 | 2 | mopnuni | |
15 | 3 14 | syl | |
16 | 13 15 | sseqtrrd | |
17 | 16 | sselda | |
18 | 1 2 3 4 5 6 | metnrmlem1a | |
19 | 18 | simprd | |
20 | 19 | rphalfcld | |
21 | 20 | rpxrd | |
22 | 2 | blopn | |
23 | 10 17 21 22 | syl3anc | |
24 | 23 | ralrimiva | |
25 | iunopn | |
|
26 | 9 24 25 | syl2anc | |
27 | 7 26 | eqeltrid | |
28 | blcntr | |
|
29 | 10 17 20 28 | syl3anc | |
30 | 29 | snssd | |
31 | 30 | ralrimiva | |
32 | ss2iun | |
|
33 | 31 32 | syl | |
34 | iunid | |
|
35 | 34 | eqcomi | |
36 | 33 35 7 | 3sstr4g | |
37 | 27 36 | jca | |