Metamath Proof Explorer


Theorem metnrmlem2

Description: Lemma for metnrm . (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Hypotheses metdscn.f F=xXsupranySxDy*<
metdscn.j J=MetOpenD
metnrmlem.1 φD∞MetX
metnrmlem.2 φSClsdJ
metnrmlem.3 φTClsdJ
metnrmlem.4 φST=
metnrmlem.u U=tTtballDif1Ft1Ft2
Assertion metnrmlem2 φUJTU

Proof

Step Hyp Ref Expression
1 metdscn.f F=xXsupranySxDy*<
2 metdscn.j J=MetOpenD
3 metnrmlem.1 φD∞MetX
4 metnrmlem.2 φSClsdJ
5 metnrmlem.3 φTClsdJ
6 metnrmlem.4 φST=
7 metnrmlem.u U=tTtballDif1Ft1Ft2
8 2 mopntop D∞MetXJTop
9 3 8 syl φJTop
10 3 adantr φtTD∞MetX
11 eqid J=J
12 11 cldss TClsdJTJ
13 5 12 syl φTJ
14 2 mopnuni D∞MetXX=J
15 3 14 syl φX=J
16 13 15 sseqtrrd φTX
17 16 sselda φtTtX
18 1 2 3 4 5 6 metnrmlem1a φtT0<Ftif1Ft1Ft+
19 18 simprd φtTif1Ft1Ft+
20 19 rphalfcld φtTif1Ft1Ft2+
21 20 rpxrd φtTif1Ft1Ft2*
22 2 blopn D∞MetXtXif1Ft1Ft2*tballDif1Ft1Ft2J
23 10 17 21 22 syl3anc φtTtballDif1Ft1Ft2J
24 23 ralrimiva φtTtballDif1Ft1Ft2J
25 iunopn JToptTtballDif1Ft1Ft2JtTtballDif1Ft1Ft2J
26 9 24 25 syl2anc φtTtballDif1Ft1Ft2J
27 7 26 eqeltrid φUJ
28 blcntr D∞MetXtXif1Ft1Ft2+ttballDif1Ft1Ft2
29 10 17 20 28 syl3anc φtTttballDif1Ft1Ft2
30 29 snssd φtTttballDif1Ft1Ft2
31 30 ralrimiva φtTttballDif1Ft1Ft2
32 ss2iun tTttballDif1Ft1Ft2tTttTtballDif1Ft1Ft2
33 31 32 syl φtTttTtballDif1Ft1Ft2
34 iunid tTt=T
35 34 eqcomi T=tTt
36 33 35 7 3sstr4g φTU
37 27 36 jca φUJTU