Metamath Proof Explorer


Theorem mgm2nsgrplem2

Description: Lemma 2 for mgm2nsgrp . (Contributed by AV, 27-Jan-2020)

Ref Expression
Hypotheses mgm2nsgrp.s S=AB
mgm2nsgrp.b BaseM=S
mgm2nsgrp.o +M=xS,ySifx=Ay=ABA
mgm2nsgrp.p No typesetting found for |- .o. = ( +g ` M ) with typecode |-
Assertion mgm2nsgrplem2 Could not format assertion : No typesetting found for |- ( ( A e. V /\ B e. W ) -> ( ( A .o. A ) .o. B ) = A ) with typecode |-

Proof

Step Hyp Ref Expression
1 mgm2nsgrp.s S=AB
2 mgm2nsgrp.b BaseM=S
3 mgm2nsgrp.o +M=xS,ySifx=Ay=ABA
4 mgm2nsgrp.p Could not format .o. = ( +g ` M ) : No typesetting found for |- .o. = ( +g ` M ) with typecode |-
5 prid1g AVAAB
6 5 1 eleqtrrdi AVAS
7 prid2g BWBAB
8 7 1 eleqtrrdi BWBS
9 4 3 eqtri Could not format .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) : No typesetting found for |- .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) with typecode |-
10 9 a1i Could not format ( ( A e. S /\ B e. S ) -> .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> .o. = ( x e. S , y e. S |-> if ( ( x = A /\ y = A ) , B , A ) ) ) with typecode |-
11 ifeq1 B=Aifx=Ay=ABA=ifx=Ay=AAA
12 ifid ifx=Ay=AAA=A
13 11 12 eqtrdi B=Aifx=Ay=ABA=A
14 13 a1d B=Ay=Bifx=Ay=ABA=A
15 eqeq1 y=By=AB=A
16 15 bicomd y=BB=Ay=A
17 16 notbid y=B¬B=A¬y=A
18 17 biimpac ¬B=Ay=B¬y=A
19 18 intnand ¬B=Ay=B¬x=Ay=A
20 19 iffalsed ¬B=Ay=Bifx=Ay=ABA=A
21 20 ex ¬B=Ay=Bifx=Ay=ABA=A
22 14 21 pm2.61i y=Bifx=Ay=ABA=A
23 22 ad2antll Could not format ( ( ( A e. S /\ B e. S ) /\ ( x = ( A .o. A ) /\ y = B ) ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) : No typesetting found for |- ( ( ( A e. S /\ B e. S ) /\ ( x = ( A .o. A ) /\ y = B ) ) -> if ( ( x = A /\ y = A ) , B , A ) = A ) with typecode |-
24 iftrue x=Ay=Aifx=Ay=ABA=B
25 24 adantl ASBSx=Ay=Aifx=Ay=ABA=B
26 simpl ASBSAS
27 simpr ASBSBS
28 10 25 26 26 27 ovmpod Could not format ( ( A e. S /\ B e. S ) -> ( A .o. A ) = B ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( A .o. A ) = B ) with typecode |-
29 28 27 eqeltrd Could not format ( ( A e. S /\ B e. S ) -> ( A .o. A ) e. S ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( A .o. A ) e. S ) with typecode |-
30 10 23 29 27 26 ovmpod Could not format ( ( A e. S /\ B e. S ) -> ( ( A .o. A ) .o. B ) = A ) : No typesetting found for |- ( ( A e. S /\ B e. S ) -> ( ( A .o. A ) .o. B ) = A ) with typecode |-
31 6 8 30 syl2an Could not format ( ( A e. V /\ B e. W ) -> ( ( A .o. A ) .o. B ) = A ) : No typesetting found for |- ( ( A e. V /\ B e. W ) -> ( ( A .o. A ) .o. B ) = A ) with typecode |-