Description: Show that the ring homomorphism in rhmmpl preserves addition. (Contributed by SN, 8-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mhmcoaddmpl.p | |
|
mhmcoaddmpl.q | |
||
mhmcoaddmpl.b | |
||
mhmcoaddmpl.c | |
||
mhmcoaddmpl.1 | |
||
mhmcoaddmpl.2 | |
||
mhmcoaddmpl.i | |
||
mhmcoaddmpl.h | |
||
mhmcoaddmpl.f | |
||
mhmcoaddmpl.g | |
||
Assertion | mhmcoaddmpl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhmcoaddmpl.p | |
|
2 | mhmcoaddmpl.q | |
|
3 | mhmcoaddmpl.b | |
|
4 | mhmcoaddmpl.c | |
|
5 | mhmcoaddmpl.1 | |
|
6 | mhmcoaddmpl.2 | |
|
7 | mhmcoaddmpl.i | |
|
8 | mhmcoaddmpl.h | |
|
9 | mhmcoaddmpl.f | |
|
10 | mhmcoaddmpl.g | |
|
11 | fvexd | |
|
12 | ovex | |
|
13 | 12 | rabex | |
14 | 13 | a1i | |
15 | eqid | |
|
16 | eqid | |
|
17 | 1 15 3 16 9 | mplelf | |
18 | 11 14 17 | elmapdd | |
19 | 1 15 3 16 10 | mplelf | |
20 | 11 14 19 | elmapdd | |
21 | eqid | |
|
22 | eqid | |
|
23 | 15 21 22 | mhmvlin | |
24 | 8 18 20 23 | syl3anc | |
25 | 1 3 21 5 9 10 | mpladd | |
26 | 25 | coeq2d | |
27 | 1 2 3 4 7 8 9 | mhmcompl | |
28 | 1 2 3 4 7 8 10 | mhmcompl | |
29 | 2 4 22 6 27 28 | mpladd | |
30 | 24 26 29 | 3eqtr4d | |