Metamath Proof Explorer


Theorem mhmcoaddmpl

Description: Show that the ring homomorphism in rhmmpl preserves addition. (Contributed by SN, 8-Feb-2025)

Ref Expression
Hypotheses mhmcoaddmpl.p P=ImPolyR
mhmcoaddmpl.q Q=ImPolyS
mhmcoaddmpl.b B=BaseP
mhmcoaddmpl.c C=BaseQ
mhmcoaddmpl.1 +˙=+P
mhmcoaddmpl.2 ˙=+Q
mhmcoaddmpl.i φIV
mhmcoaddmpl.h φHRMndHomS
mhmcoaddmpl.f φFB
mhmcoaddmpl.g φGB
Assertion mhmcoaddmpl φHF+˙G=HF˙HG

Proof

Step Hyp Ref Expression
1 mhmcoaddmpl.p P=ImPolyR
2 mhmcoaddmpl.q Q=ImPolyS
3 mhmcoaddmpl.b B=BaseP
4 mhmcoaddmpl.c C=BaseQ
5 mhmcoaddmpl.1 +˙=+P
6 mhmcoaddmpl.2 ˙=+Q
7 mhmcoaddmpl.i φIV
8 mhmcoaddmpl.h φHRMndHomS
9 mhmcoaddmpl.f φFB
10 mhmcoaddmpl.g φGB
11 fvexd φBaseRV
12 ovex 0IV
13 12 rabex f0I|f-1FinV
14 13 a1i φf0I|f-1FinV
15 eqid BaseR=BaseR
16 eqid f0I|f-1Fin=f0I|f-1Fin
17 1 15 3 16 9 mplelf φF:f0I|f-1FinBaseR
18 11 14 17 elmapdd φFBaseRf0I|f-1Fin
19 1 15 3 16 10 mplelf φG:f0I|f-1FinBaseR
20 11 14 19 elmapdd φGBaseRf0I|f-1Fin
21 eqid +R=+R
22 eqid +S=+S
23 15 21 22 mhmvlin HRMndHomSFBaseRf0I|f-1FinGBaseRf0I|f-1FinHF+RfG=HF+SfHG
24 8 18 20 23 syl3anc φHF+RfG=HF+SfHG
25 1 3 21 5 9 10 mpladd φF+˙G=F+RfG
26 25 coeq2d φHF+˙G=HF+RfG
27 1 2 3 4 7 8 9 mhmcompl φHFC
28 1 2 3 4 7 8 10 mhmcompl φHGC
29 2 4 22 6 27 28 mpladd φHF˙HG=HF+SfHG
30 24 26 29 3eqtr4d φHF+˙G=HF˙HG