Metamath Proof Explorer


Theorem mhpval

Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpfval.h H=ImHomPR
mhpfval.p P=ImPolyR
mhpfval.b B=BaseP
mhpfval.0 0˙=0R
mhpfval.d D=h0I|h-1Fin
mhpfval.i φIV
mhpfval.r φRW
mhpval.n φN0
Assertion mhpval φHN=fB|fsupp0˙gD|fld𝑠0g=N

Proof

Step Hyp Ref Expression
1 mhpfval.h H=ImHomPR
2 mhpfval.p P=ImPolyR
3 mhpfval.b B=BaseP
4 mhpfval.0 0˙=0R
5 mhpfval.d D=h0I|h-1Fin
6 mhpfval.i φIV
7 mhpfval.r φRW
8 mhpval.n φN0
9 1 2 3 4 5 6 7 mhpfval φH=n0fB|fsupp0˙gD|fld𝑠0g=n
10 eqeq2 n=Nfld𝑠0g=nfld𝑠0g=N
11 10 rabbidv n=NgD|fld𝑠0g=n=gD|fld𝑠0g=N
12 11 sseq2d n=Nfsupp0˙gD|fld𝑠0g=nfsupp0˙gD|fld𝑠0g=N
13 12 rabbidv n=NfB|fsupp0˙gD|fld𝑠0g=n=fB|fsupp0˙gD|fld𝑠0g=N
14 13 adantl φn=NfB|fsupp0˙gD|fld𝑠0g=n=fB|fsupp0˙gD|fld𝑠0g=N
15 3 fvexi BV
16 15 rabex fB|fsupp0˙gD|fld𝑠0g=NV
17 16 a1i φfB|fsupp0˙gD|fld𝑠0g=NV
18 9 14 8 17 fvmptd φHN=fB|fsupp0˙gD|fld𝑠0g=N