Metamath Proof Explorer


Theorem midf

Description: Midpoint as a function. (Contributed by Thierry Arnoux, 1-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
Assertion midf φmid𝒢G:P×PP

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 eqid Line𝒢G=Line𝒢G
7 4 adantr φaPbPG𝒢Tarski
8 eqid pInv𝒢G=pInv𝒢G
9 simprl φaPbPaP
10 simprr φaPbPbP
11 5 adantr φaPbPGDim𝒢2
12 1 2 3 6 7 8 9 10 11 mideu φaPbP∃!mPb=pInv𝒢Gma
13 12 ralrimivva φaPbP∃!mPb=pInv𝒢Gma
14 riotacl ∃!mPb=pInv𝒢GmaιmP|b=pInv𝒢GmaP
15 14 2ralimi aPbP∃!mPb=pInv𝒢GmaaPbPιmP|b=pInv𝒢GmaP
16 13 15 syl φaPbPιmP|b=pInv𝒢GmaP
17 eqid aP,bPιmP|b=pInv𝒢Gma=aP,bPιmP|b=pInv𝒢Gma
18 17 fmpo aPbPιmP|b=pInv𝒢GmaPaP,bPιmP|b=pInv𝒢Gma:P×PP
19 16 18 sylib φaP,bPιmP|b=pInv𝒢Gma:P×PP
20 df-mid mid𝒢=gVaBaseg,bBasegιmBaseg|b=pInv𝒢gma
21 fveq2 g=GBaseg=BaseG
22 21 1 eqtr4di g=GBaseg=P
23 fveq2 g=GpInv𝒢g=pInv𝒢G
24 23 fveq1d g=GpInv𝒢gm=pInv𝒢Gm
25 24 fveq1d g=GpInv𝒢gma=pInv𝒢Gma
26 25 eqeq2d g=Gb=pInv𝒢gmab=pInv𝒢Gma
27 22 26 riotaeqbidv g=GιmBaseg|b=pInv𝒢gma=ιmP|b=pInv𝒢Gma
28 22 22 27 mpoeq123dv g=GaBaseg,bBasegιmBaseg|b=pInv𝒢gma=aP,bPιmP|b=pInv𝒢Gma
29 4 elexd φGV
30 1 fvexi PV
31 30 30 mpoex aP,bPιmP|b=pInv𝒢GmaV
32 31 a1i φaP,bPιmP|b=pInv𝒢GmaV
33 20 28 29 32 fvmptd3 φmid𝒢G=aP,bPιmP|b=pInv𝒢Gma
34 33 feq1d φmid𝒢G:P×PPaP,bPιmP|b=pInv𝒢Gma:P×PP
35 19 34 mpbird φmid𝒢G:P×PP