Metamath Proof Explorer


Theorem minveco

Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace W that minimizes the distance to an arbitrary vector A in a parent inner product space. Theorem 3.3-1 of Kreyszig p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008) (Proof shortened by Mario Carneiro, 9-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses minveco.x X=BaseSetU
minveco.m M=-vU
minveco.n N=normCVU
minveco.y Y=BaseSetW
minveco.u φUCPreHilOLD
minveco.w φWSubSpUCBan
minveco.a φAX
Assertion minveco φ∃!xYyYNAMxNAMy

Proof

Step Hyp Ref Expression
1 minveco.x X=BaseSetU
2 minveco.m M=-vU
3 minveco.n N=normCVU
4 minveco.y Y=BaseSetW
5 minveco.u φUCPreHilOLD
6 minveco.w φWSubSpUCBan
7 minveco.a φAX
8 eqid IndMetU=IndMetU
9 eqid MetOpenIndMetU=MetOpenIndMetU
10 oveq2 j=yAMj=AMy
11 10 fveq2d j=yNAMj=NAMy
12 11 cbvmptv jYNAMj=yYNAMy
13 12 rneqi ranjYNAMj=ranyYNAMy
14 eqid supranjYNAMj<=supranjYNAMj<
15 1 2 3 4 5 6 7 8 9 13 14 minvecolem7 φ∃!xYyYNAMxNAMy