Description: Lemma for maducoeval2 . (Contributed by SO, 16-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndifsplit.b | |
|
mndifsplit.0g | |
||
mndifsplit.pg | |
||
Assertion | mndifsplit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndifsplit.b | |
|
2 | mndifsplit.0g | |
|
3 | mndifsplit.pg | |
|
4 | pm2.21 | |
|
5 | 4 | imp | |
6 | 5 | 3ad2antl3 | |
7 | 1 3 2 | mndrid | |
8 | 7 | 3adant3 | |
9 | 8 | adantr | |
10 | iftrue | |
|
11 | iffalse | |
|
12 | 10 11 | oveqan12d | |
13 | 12 | adantl | |
14 | iftrue | |
|
15 | 14 | orcs | |
16 | 15 | ad2antrl | |
17 | 9 13 16 | 3eqtr4rd | |
18 | 1 3 2 | mndlid | |
19 | 18 | 3adant3 | |
20 | 19 | adantr | |
21 | iffalse | |
|
22 | iftrue | |
|
23 | 21 22 | oveqan12d | |
24 | 23 | adantl | |
25 | 14 | olcs | |
26 | 25 | ad2antll | |
27 | 20 24 26 | 3eqtr4rd | |
28 | simp1 | |
|
29 | 1 2 | mndidcl | |
30 | 1 3 2 | mndlid | |
31 | 28 29 30 | syl2anc2 | |
32 | 31 | adantr | |
33 | 21 11 | oveqan12d | |
34 | 33 | adantl | |
35 | ioran | |
|
36 | iffalse | |
|
37 | 35 36 | sylbir | |
38 | 37 | adantl | |
39 | 32 34 38 | 3eqtr4rd | |
40 | 6 17 27 39 | 4casesdan | |