Metamath Proof Explorer


Theorem mndpfo

Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 11-Oct-2013) (Revised by AV, 23-Jan-2020)

Ref Expression
Hypotheses mndpf.b B=BaseG
mndpf.p ˙=+𝑓G
Assertion mndpfo GMnd˙:B×BontoB

Proof

Step Hyp Ref Expression
1 mndpf.b B=BaseG
2 mndpf.p ˙=+𝑓G
3 1 2 mndplusf GMnd˙:B×BB
4 simpr GMndxBxB
5 eqid 0G=0G
6 1 5 mndidcl GMnd0GB
7 6 adantr GMndxB0GB
8 eqid +G=+G
9 1 8 5 mndrid GMndxBx+G0G=x
10 9 eqcomd GMndxBx=x+G0G
11 rspceov xB0GBx=x+G0GyBzBx=y+Gz
12 4 7 10 11 syl3anc GMndxByBzBx=y+Gz
13 1 8 2 plusfval yBzBy˙z=y+Gz
14 13 eqeq2d yBzBx=y˙zx=y+Gz
15 14 2rexbiia yBzBx=y˙zyBzBx=y+Gz
16 12 15 sylibr GMndxByBzBx=y˙z
17 16 ralrimiva GMndxByBzBx=y˙z
18 foov ˙:B×BontoB˙:B×BBxByBzBx=y˙z
19 3 17 18 sylanbrc GMnd˙:B×BontoB