Metamath Proof Explorer


Theorem mnringlmodd

Description: Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringlmodd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringlmodd.2 φRRing
mnringlmodd.3 φMU
Assertion mnringlmodd φFLMod

Proof

Step Hyp Ref Expression
1 mnringlmodd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringlmodd.2 φRRing
3 mnringlmodd.3 φMU
4 fvexd φBaseMV
5 eqid RfreeLModBaseM=RfreeLModBaseM
6 5 frlmlmod RRingBaseMVRfreeLModBaseMLMod
7 2 4 6 syl2anc φRfreeLModBaseMLMod
8 eqidd φBaseRfreeLModBaseM=BaseRfreeLModBaseM
9 eqid BaseM=BaseM
10 eqid BaseRfreeLModBaseM=BaseRfreeLModBaseM
11 1 9 5 10 2 3 mnringbased φBaseRfreeLModBaseM=BaseF
12 1 9 5 2 3 mnringaddgd φ+RfreeLModBaseM=+F
13 12 oveqdr φxBaseRfreeLModBaseMyBaseRfreeLModBaseMx+RfreeLModBaseMy=x+Fy
14 5 frlmsca RRingBaseMVR=ScalarRfreeLModBaseM
15 2 4 14 syl2anc φR=ScalarRfreeLModBaseM
16 1 2 3 mnringscad φR=ScalarF
17 eqid BaseR=BaseR
18 1 9 5 2 3 mnringvscad φRfreeLModBaseM=F
19 18 oveqdr φxBaseRyBaseRfreeLModBaseMxRfreeLModBaseMy=xFy
20 8 11 13 15 16 17 19 lmodpropd φRfreeLModBaseMLModFLMod
21 7 20 mpbid φFLMod