Description: Divisibility in terms of modular reduction by the absolute value of the base. (Contributed by Stefan O'Rear, 26-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | modabsdifz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | simp2 | |
|
3 | 2 | recnd | |
4 | simp3 | |
|
5 | 3 4 | absrpcld | |
6 | moddifz | |
|
7 | 1 5 6 | syl2anc | |
8 | absidm | |
|
9 | 3 8 | syl | |
10 | 9 | oveq2d | |
11 | 1 5 | modcld | |
12 | 1 11 | resubcld | |
13 | 12 | recnd | |
14 | 3 | abscld | |
15 | 14 | recnd | |
16 | 5 | rpne0d | |
17 | 13 15 16 | absdivd | |
18 | 13 3 4 | absdivd | |
19 | 10 17 18 | 3eqtr4d | |
20 | 19 | eleq1d | |
21 | 12 14 16 | redivcld | |
22 | absz | |
|
23 | 21 22 | syl | |
24 | 12 2 4 | redivcld | |
25 | absz | |
|
26 | 24 25 | syl | |
27 | 20 23 26 | 3bitr4d | |
28 | 7 27 | mpbid | |