Metamath Proof Explorer


Theorem mpaalem

Description: Properties of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion mpaalem A𝔸minPoly𝔸APolydegminPoly𝔸A=deg𝔸AminPoly𝔸AA=0coeffminPoly𝔸Adeg𝔸A=1

Proof

Step Hyp Ref Expression
1 mpaaval A𝔸minPoly𝔸A=ιpPoly|degp=deg𝔸ApA=0coeffpdeg𝔸A=1
2 mpaaeu A𝔸∃!pPolydegp=deg𝔸ApA=0coeffpdeg𝔸A=1
3 riotacl2 ∃!pPolydegp=deg𝔸ApA=0coeffpdeg𝔸A=1ιpPoly|degp=deg𝔸ApA=0coeffpdeg𝔸A=1pPoly|degp=deg𝔸ApA=0coeffpdeg𝔸A=1
4 2 3 syl A𝔸ιpPoly|degp=deg𝔸ApA=0coeffpdeg𝔸A=1pPoly|degp=deg𝔸ApA=0coeffpdeg𝔸A=1
5 1 4 eqeltrd A𝔸minPoly𝔸ApPoly|degp=deg𝔸ApA=0coeffpdeg𝔸A=1
6 fveqeq2 p=minPoly𝔸Adegp=deg𝔸AdegminPoly𝔸A=deg𝔸A
7 fveq1 p=minPoly𝔸ApA=minPoly𝔸AA
8 7 eqeq1d p=minPoly𝔸ApA=0minPoly𝔸AA=0
9 fveq2 p=minPoly𝔸Acoeffp=coeffminPoly𝔸A
10 9 fveq1d p=minPoly𝔸Acoeffpdeg𝔸A=coeffminPoly𝔸Adeg𝔸A
11 10 eqeq1d p=minPoly𝔸Acoeffpdeg𝔸A=1coeffminPoly𝔸Adeg𝔸A=1
12 6 8 11 3anbi123d p=minPoly𝔸Adegp=deg𝔸ApA=0coeffpdeg𝔸A=1degminPoly𝔸A=deg𝔸AminPoly𝔸AA=0coeffminPoly𝔸Adeg𝔸A=1
13 12 elrab minPoly𝔸ApPoly|degp=deg𝔸ApA=0coeffpdeg𝔸A=1minPoly𝔸APolydegminPoly𝔸A=deg𝔸AminPoly𝔸AA=0coeffminPoly𝔸Adeg𝔸A=1
14 5 13 sylib A𝔸minPoly𝔸APolydegminPoly𝔸A=deg𝔸AminPoly𝔸AA=0coeffminPoly𝔸Adeg𝔸A=1