Metamath Proof Explorer


Theorem mpct

Description: The exponentiation of a countable set to a finite set is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses mpct.a φAω
mpct.b φBFin
Assertion mpct φABω

Proof

Step Hyp Ref Expression
1 mpct.a φAω
2 mpct.b φBFin
3 oveq2 x=Ax=A
4 3 breq1d x=AxωAω
5 oveq2 x=yAx=Ay
6 5 breq1d x=yAxωAyω
7 oveq2 x=yzAx=Ayz
8 7 breq1d x=yzAxωAyzω
9 oveq2 x=BAx=AB
10 9 breq1d x=BAxωABω
11 ctex AωAV
12 1 11 syl φAV
13 mapdm0 AVA=
14 12 13 syl φA=
15 snfi Fin
16 fict Finω
17 15 16 ax-mp ω
18 17 a1i φω
19 14 18 eqbrtrd φAω
20 vex yV
21 20 a1i φyBzByAyωyV
22 vsnex zV
23 22 a1i φyBzByAyωzV
24 12 ad2antrr φyBzByAyωAV
25 eldifn zBy¬zy
26 disjsn yz=¬zy
27 25 26 sylibr zByyz=
28 27 adantl yBzByyz=
29 28 ad2antlr φyBzByAyωyz=
30 mapunen yVzVAVyz=AyzAy×Az
31 21 23 24 29 30 syl31anc φyBzByAyωAyzAy×Az
32 simpr φyBzByAyωAyω
33 vex zV
34 33 a1i φzV
35 12 34 mapsnend φAzA
36 endomtr AzAAωAzω
37 35 1 36 syl2anc φAzω
38 37 ad2antrr φyBzByAyωAzω
39 xpct AyωAzωAy×Azω
40 32 38 39 syl2anc φyBzByAyωAy×Azω
41 endomtr AyzAy×AzAy×AzωAyzω
42 31 40 41 syl2anc φyBzByAyωAyzω
43 42 ex φyBzByAyωAyzω
44 4 6 8 10 19 43 2 findcard2d φABω