Description: The exponentiation of a countable set to a finite set is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpct.a | |
|
mpct.b | |
||
Assertion | mpct | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpct.a | |
|
2 | mpct.b | |
|
3 | oveq2 | |
|
4 | 3 | breq1d | |
5 | oveq2 | |
|
6 | 5 | breq1d | |
7 | oveq2 | |
|
8 | 7 | breq1d | |
9 | oveq2 | |
|
10 | 9 | breq1d | |
11 | ctex | |
|
12 | 1 11 | syl | |
13 | mapdm0 | |
|
14 | 12 13 | syl | |
15 | snfi | |
|
16 | fict | |
|
17 | 15 16 | ax-mp | |
18 | 17 | a1i | |
19 | 14 18 | eqbrtrd | |
20 | vex | |
|
21 | 20 | a1i | |
22 | vsnex | |
|
23 | 22 | a1i | |
24 | 12 | ad2antrr | |
25 | eldifn | |
|
26 | disjsn | |
|
27 | 25 26 | sylibr | |
28 | 27 | adantl | |
29 | 28 | ad2antlr | |
30 | mapunen | |
|
31 | 21 23 24 29 30 | syl31anc | |
32 | simpr | |
|
33 | vex | |
|
34 | 33 | a1i | |
35 | 12 34 | mapsnend | |
36 | endomtr | |
|
37 | 35 1 36 | syl2anc | |
38 | 37 | ad2antrr | |
39 | xpct | |
|
40 | 32 38 39 | syl2anc | |
41 | endomtr | |
|
42 | 31 40 41 | syl2anc | |
43 | 42 | ex | |
44 | 4 6 8 10 19 43 2 | findcard2d | |