Metamath Proof Explorer


Theorem mplneg

Description: The negative function on multivariate polynomials. (Contributed by SN, 25-May-2024)

Ref Expression
Hypotheses mplneg.p P=ImPolyR
mplneg.b B=BaseP
mplneg.n N=invgR
mplneg.m M=invgP
mplneg.i φIV
mplneg.r φRGrp
mplneg.x φXB
Assertion mplneg φMX=NX

Proof

Step Hyp Ref Expression
1 mplneg.p P=ImPolyR
2 mplneg.b B=BaseP
3 mplneg.n N=invgR
4 mplneg.m M=invgP
5 mplneg.i φIV
6 mplneg.r φRGrp
7 mplneg.x φXB
8 eqid ImPwSerR=ImPwSerR
9 8 1 2 5 6 mplsubg φBSubGrpImPwSerR
10 1 8 2 mplval2 P=ImPwSerR𝑠B
11 eqid invgImPwSerR=invgImPwSerR
12 10 11 4 subginv BSubGrpImPwSerRXBinvgImPwSerRX=MX
13 9 7 12 syl2anc φinvgImPwSerRX=MX
14 eqid f0I|f-1Fin=f0I|f-1Fin
15 eqid BaseImPwSerR=BaseImPwSerR
16 1 8 2 15 mplbasss BBaseImPwSerR
17 16 sseli XBXBaseImPwSerR
18 7 17 syl φXBaseImPwSerR
19 8 5 6 14 3 15 11 18 psrneg φinvgImPwSerRX=NX
20 13 19 eqtr3d φMX=NX